Spelling suggestions: "subject:"highperformance concrete"" "subject:"highperformance concrete""
61 |
Investigation of Long-Term Prestress Losses in Pretensioned High Performance Concrete GirdersWaldron, Christopher Joseph 01 December 2004 (has links)
Effective determination of long-term prestress losses is important in the design of prestressed concrete bridges. Over-predicting prestress losses results in an overly conservative design for service load stresses, and under-predicting prestress losses, can result in cracking at service loads. Creep and shrinkage produce the most significant time-dependent effect on prestress losses, and research has shown that high performance and high strength concretes (HPC and HSC) exhibit less creep and shrinkage than conventional concrete. For this reason, the majority of traditional creep and shrinkage models and methods for estimating prestress losses, over-predict the prestress losses of HPC and HSC girders.
Nine HPC girders, with design compressive strengths ranging from 8,000 psi to 10,000 psi, and three 8,000 psi lightweight HPC (HPLWC) girders were instrumented to determine the changes in strain and prestress losses. Several creep and shrinkage models were used to model the instrumented girders. For the HPLWC, each model over-predicted the long-term strains, and the Shams and Kahn model was the best predictor of the measured strains. For the normal weight HPC, the models under-estimated the measured strains at early ages and over-estimated the measured strains at later ages, and the B3 model was the best-predictor of the measured strains. The PCI-BDM model was the most consistent model across all of the instrumented girders.
Several methods for estimating prestress losses were also investigated. The methods correlated to high strength concrete, the PCI-BDM and NCHRP 496 methods, predicted the total losses more accurately than the methods provided in the AASHTO Specifications. The newer methods over-predicted the total losses of the HPLWC girders by no more than 8 ksi, and although they under-predicted the total losses of the normal weight HPC girders, they did so by less than 5 ksi. / Ph. D.
|
62 |
Non-Invasive Permeability Assessment of High-Performance Concrete Bridge Deck MixturesBryant, James William Jr. 27 April 2001 (has links)
Concrete construction methods and practices influence the final in-place quality of concrete. A low permeability concrete mixture does not alone ensure quality in-place concrete. If the concrete mixture is not transported, placed and cured properly, it may not exhibit the desired durability and mechanical properties.
This study investigates the in-place permeation properties of low permeability concrete bridge decks mixtures used in the Commonwealth of Virginia. Permeation properties were assessed in both the laboratory and in the field using 4-point Wenner array electrical resistivity, surface air flow (SAF), and chloride ion penetrability (ASTM C 1202-97).
Laboratory test specimens consisted of two concrete slabs having dimensions of 280 x 280 x 102-mm (11 x 11 x 4-in) and twelve 102 x 204-mm (4 x 8-in) cylinders per concrete mixture. Specimens were tested at 7, 28 and 91-days. Thirteen cylinder specimens per concrete mixture underwent standard curing in a saturated limewater bath. The simulated field-curing regimes used wet burlap and plastic sheeting for 3 (3B) and 7 days (7B) respectively and was applied to both slabs and cylinder specimens.
Slab specimen were tested on finished surface using the SAF at 28 and 91 days, and 4-point electrical resistivity measurements at 1, 3, 7, 14, 28 and 91 days. Compressive strength (CS) tests were conducted at 7 and 28 days. Chloride ion penetrability tests were performed at 7, 28, and 91 days.
Statistical analyses were performed to assess the significance of the relationships for the following: Total charge passed and initial current (ASTM C 1202-97); 3B resistivity and 7B resistivity; Slab and cylinder resistivity; Slab resistivity and ASTM C-1202-97 (Total Charge and Initial current); and Surface Air Flow and ASTM C-1202-97.
Field cast specimens, test slabs and cylinders, were cast on-site during concrete bridge deck construction. The slab dimensions were 30.5 x 40.6 x 10.2-cm (12 x 16 x 4 in.), and the cylinders were 10.2 x 20.4-cm (4 x 8-in). In-situ SAF and resistivity measurements were taken on the bridge deck at 14, 42 and 91 days. In-place SAF and resistivity measurements on laboratory field cast slabs were taken at 7, 14 and 28-days. ASTM C 1202-97 specimens were prepared from field cast cylinders and tested at 7 and 28 and 42-days. The relationship between in-place permeation measures from field specimens was compared to laboratory data.
Results indicated no difference in chloride ion penetrability (Figures 7.4 and 7.5) and 28-day compressive strength (Figure 7.2) with regard to differing simulated field curing regimes, for same age testing. There was no significant difference at the 95 % confidence level between 3B resistivity and 7B resistivity specimens tested at the same age (Figures 7.9 and 7.10).
A well defined relationship was observed between total charge passed and initial current (Figure 7-6). An inverse power function was found to describe the relationship between charge passed/initial current and electrical resistivity for all laboratory mixtures used in this study (Figure 7.17 – 7.22). Field data was used to validate laboratory established models for charge passed/initial current and electrical resistivity. Laboratory established models were able to predict 30 to 50% of the field data (Figures 7.31 – 7.34). Results indicate that the SAF lacked the sensitivity to classify the range of concretes used in this study (Figure 7.24). / Ph. D.
|
63 |
Self-sensing ultra-high performance concrete: A reviewGuo, Y., Wang, D., Ashour, Ashraf, Ding, S., Han, B. 02 November 2023 (has links)
Yes / Ultra-high performance concrete (UHPC) is an innovative cementitious composite, that has been widely applied in numerous structural projects because of its superior mechanical properties and durability. However, ensuring the safety of UHPC structures necessitates an urgent need for technology to continuously monitor and evaluate their condition during their extended periods of service. Self-sensing ultra-high performance concrete (SSUHPC) extends the functionality of UHPC system by integrating conductive fillers into the UHPC matrix, allowing it to address above demands with great potential and superiority. By measuring and analyzing the relationship between fraction change in resistivity (FCR) and external stimulates (force, stress, strain), SSUHPC can effectively monitor the crack initiation and propagation as well as damage events in UHPC structures, thus offering a promising pathway for structural health monitoring (SHM). Research on SSUHPC has attracted substantial interests from both academic and engineering practitioners in recent years, this paper aims to provide a comprehensive review on the state of the art of SSUHPC. It offers a detailed overview of material composition, mechanical properties and self-sensing capabilities, and the underlying mechanisms involved of SSUHPC with various functional fillers. Furthermore, based on the recent advancements in SSUHPC technology, the paper concludes that SSUHPC has superior self-sensing performance under tensile load but poor self-sensing performance under compressive load. The mechanical and self-sensing properties of UHPC are substantially dependent on the type and dosage of functional fillers. In addition, the practical engineering SHM application of SSUHPC, particularly in the context of large-scale structure, is met with certain challenges, such as environment effects on the response of SSUHPC. Therefore, it still requires further extensive investigation and empirical validation to bridge the gap between laboratory research and real engineering application of SSUHPC.
|
64 |
Dynamic damage constitutive model for UHPC with nanofillers at high strain rates based on viscoelastic dynamic constitutive model and damage evolution equationYan, D., Qiu, L., Wang, J., Ashour, Ashraf, Wang, X. 30 December 2023 (has links)
Yes / This study established a dynamic damage constitutive model for ultra-high performance concrete (UHPC) with nanofillers, based on a viscoelastic dynamic constitutive model and a damage evolution equation. Ten types of nanofillers, including particle, tube and flake nanofillers, were incorporated to modify UHPC. The split Hopkinson pressure bar was used to obtain the relationship between stress and strain of UHPC specimens at a strain rate of 200/s-800/s. The experimental results indicated that the dynamic compressive strength of UHPC with nanofillers at strain rates of approximately 200/s, 500/s, and 800/s can reach 172.8 MPa, 219.6 MPa, and 275.9 MPa, respectively, reflecting an increase of 85.2 %, 76.5 %, and 53.9 % compared with the blank UHPC. The established dynamic damage constitutive model considered the damage accumulation with strains under dynamic loading. The fitting coefficients of the dynamic damage constitutive model, when compared against experimental results, range from 0.8796 to 0.9963, showing a higher accuracy compared with traditional Zhu-Wang-Tang (ZWT) viscoelastic model, especially at a strain rate of approximately 200/s. / National Science Foundation of China (52178118 and 52308236), and the China Postdoctoral Science Foundation (2022M720648 and 2022M710973)
|
65 |
A review on the potential application of ultra-high performance concrete in offshore wind towers: Insights into material properties, mechanisms, and modelsZhou, X., Yu, F., Ashour, Ashraf, Yang, W., Luo, Y., Han, B. 17 November 2024 (has links)
Yes / Ultra-high performance concrete (UHPC), characterized by its high strength and toughness as well as durability, provides a promising solution for the construction of offshore wind towers (OWTs). This paper comprehensively reviews the durability and the dynamic mechanical properties of UHPC for OWTs under the impacts of the marine environment. Furthermore, the modifying effects of additives, including supplementary cementitious materials (SCMs) and reinforcing fibers, as well as nanofillers on UHPC are explored. Overall, UHPC possesses a dense microstructure that impedes the intrusion of harmful substances, and owing to the incorporation of additives, UHPC exhibits outstanding dynamic mechanical properties, making it an ideal material for applications in OWTs subjected to vibration fatigue and dynamic impact loads. Incorporating SCMs into UHPC can improve the durability and environmental benefits while maintaining similar dynamic mechanical properties concurrently. Nanofillers can serve as a beneficial supplement to steel fibers providing improved durability and dynamic mechanical properties by endowing UHPC dense microstructure and high system energy. Various models of marine environmental and loading actions on UHPC, examining ion transport, matrix degradation, and constitutive models, are concluded to gain insight into the underlying destructive mechanisms. These underlying mechanisms and the theoretical models further deepen the understanding of the service performance of UHPC in marine environments, thus providing the design guidance for the potential applications of UHPC in OWTs. / The authors thank the funding supported from the National Science Foundation of China (52308236 and 52368031), and the Major Science and Technology Research Project of the China Building Materials Federation (2023JBGS10–02), Natural Science Joint Foundation of Liaoning Province (2023-BSBA-077), and the Fundamental Research Funds for the Central Universities (DUT24GJ202). / The full-text of this article will be released for public view at the end of the publisher embargo on 19 Nov 2025.
|
66 |
Mechanical Properties and Durability of Sustainable UHPC Incorporated Industrial Waste Residues and Sea/Manufactured SandGe, W., Zhu, S., Yang, J., Ashour, Ashraf, Zhang, Z., Li, W., Jiang, H., Cao, D., Shuai, H. 02 November 2023 (has links)
Yes / Considering the continuous development of sustainable development, energy saving, and emission reduction concepts, it is very important to reduce concrete's cement content in order to improve its environmental impact. Using reactive admixture to replace part of the cement in ultra-high performance concrete (UHPC) can effectively improve the overall performance of the concrete and reduce carbon dioxide emissions (CO2), which is an important aspect of environmental protection. Here, industrial waste residue (fly ash and slag), sea sand (SS), and manufactured sand (MS) were used to produce UHPC under standard curing condition, to reduce the material cost and make the it more environmentally friendly and sustainable. The effects of water-binder ratio, contents of cementitious materials, types of sands, and content of steel fibers on the mechanical performance of UHPC under standard curing were investigated experimentally. In addition, the effects of various factors on the depth under hydraulic pressure and electric flux of UHPC, mass loss, relative dynamic modulus of elasticity, flexural, and compressive strengths of UHPC specimens after freeze-thaw cycles were conducted to evaluate the impermeability, chloride, and freeze-thaw resistance of various UHPCs produced. The obtained experimental results show that the SS-UHPC and MS-UHPC prepared by standard curing exhibit high strength, excellent impermeability, and chloride resistance. The frost resistant grade of all groups of UHPCs prepared by standard curing are greater than F500 and had excellent freeze-thaw resistance, including those produced with local tap water or artificial seawater. The investigation presented in this paper could contribute to the production of new UHPCs of low cost and environmental-friendly and accelerate the application of UHPC in engineering structures.
|
67 |
Ultra-High Performance Concrete Shear Walls in Tall BuildingsDacanay, Thomas Christian 18 April 2016 (has links)
This thesis presents the results of an effort to quantify the implications of using ultra-high performance concrete (UHPC) for shear walls in tall buildings considering structural efficiency and environmental sustainability. The Lattice Discrete Particle Model (LDPM) was used to simulate the response to failure of concrete shear walls without web steel bar reinforcement under lateral loading and constant axial compressive loading. The structural efficiency of UHPC with simulated compressive strength of f'c = 231 MPa was compared to that of a high-performance concrete (HPC) with f'c = 51.7 MPa simulated compressive strength. UHPC shear walls were found to have equal uncracked stiffness and superior post-cracking capacity at a thickness 58% of the HPC shear wall thickness, and at 59% of the HPC shear wall weight. Next, the environmental sustainability of UHPC with compressive strength f'c = 220-240 MPa was compared to that of an HPC with compressive strength f'c = 49 MPa with a life-cycle assessment (LCA) approach, using SimaPro sustainability software. At a thickness 58% of the HPC shear wall thickness, UHPC shear walls with 0% fiber by volume were found to have an environmental impact 6% to 10% worse than that of HPC shear walls, and UHPC shear walls with 2% fiber by volume were found to have an environmental impact 47% to 58% worse than that of HPC shear walls. The results detailed herein will allow for design guidelines to be developed which take advantage of UHPC response in shear. Additionally, this work may be implemented into topology optimization frameworks that incorporate the potential improvements in structural efficiency and sustainability through using UHPC. / Master of Science
|
68 |
Stainless steel wires reinforced ultra-high performance concrete for self-moderating and self-sensing temperature deformationsDing, S., Dong, S., Ashour, Ashraf, Wang, X., Han, B. 26 July 2024 (has links)
Yes / The development of self-moderating and self-sensing concrete composites with high and stable thermal/electrical conductivity is essential to mitigate and monitor the temperature deformation behaviours (TDB) of engineering infrastructures such as highways, bridge pavements, airstrips and ports. Owing to the micron-scale diameter and high aspect ratio, stainless steel wires (SSWs) can establish a comprehensive and extensive thermal/electrical, as well as reinforcing, three-dimensional network within the concrete matrix, even at a low content. This paper thus investigated the TDB self-moderating and self-sensing performances of SSWs enhanced ultra-high performance concrete (UHPC). The main experiments were carried out on SSWs enhanced UHPC slabs, measuring 250 mm×225 mm×16 mm. The volume contents of SSWs studied were 0 %, 0.5 vol%, 1.0 vol% and 1.5 vol%. The TDB self-moderating and self-sensing experiments were carried out under different conditions, including indoor and outdoor environments. Such composites showed effective and highly stable capabilities in reducing the temperature difference and diminishing the strain of pavement slabs under different environmental conditions. Compared with the UHPC without SSWs, UHPC with 1.5 vol% of SSWs can reduce the temperature difference by 7.4 °C (39.4 %) when being heated from 21.6 °C to 50 °C, thus, reducing the maximum tensile/compressive strains by 83.1 %/82.2 %, and the tensile/compressive stresses by 70.8 %/82.0 %. At a heating rate of 67.1 °C/min, incorporating 1.5 vol% of SSWs results in significant reductions in both vertical displacement and stress, amounting to 98.6 % and 89.6 %, respectively. The 1.5 vol% SSWs reinforced UHPC slab also suppressed 25.0 % of temperature difference, 76.6 % of strain and 70.7 % of stress in scorching outdoor environments. The TDB of SSWs reinforced UHPC can be real-timely reflected by monitoring the quick and small-scale resistance fluctuations, and the fractional changes in resistivity can reach 5.24 % with a response time of 0.23 s. The self-moderating and self-sensing performances of such composites remained stable after repeated heating experiments, thus suggesting its potential for promising applications in engineering infrastructures which are susceptible to deformation under high-temperature conditions. / National Science Foundation of China (Grant Nos. 51908103 , 51978127 , and 52178188 ), and the Major Science and Technology Research Project of the China Building Materials Federation ( 2023JBGS10-02 ). / The full text will be available at the end of the publisher's embargo: 13th May 2025
|
69 |
Multiscale Computational Framework for Analysis and Design of Ultra-High Performance Concrete Structural Components and SystemsEl Helou, Rafic Gerges 04 November 2016 (has links)
This research develops and validates computational tools for the design and analysis of structural components and systems constructed with Ultra-High Performance Concrete (UHPC). The modeling strategy utilizes the Lattice Discrete Particle Model (LDPM) to represent UHPC material and structural member response, and extends a structural-level triaxial continuum constitutive law to account for the addition of discrete fibers. The approach is robust, general, and could be utilized by other researchers to expand the computational capability and simulate the behavior of different composite materials. The work described herein identifies the model material parameters by conducting a complete material characterization for UHPC, with and without fiber reinforcement, describing its behavior in unconfined compression, uniaxial tension, and fracture toughness. It characterizes the effect of fiber orientations, fiber-matrix interaction, and resolves the issue of multi-axial stress states on fiber pullout. The capabilities of the computational models are demonstrated by comparing the material test data that were not used in the parameter identification phase to numerical simulations to validate the models' predictive capabilities. These models offer a mechanics-based shortcut to UHPC analysis that can strategically support ongoing development of material and structural design codes and standards. / Ph. D. / This research develops and validates new computer-based methods to analyze and design civil infrastructure constructed with ultra-high performance concrete (UHPC), achieved when steel fibers are combined with a finely graded cement matrix. With superior performance characteristics in comparison to regular concrete, UHPC is studied herein for its strong potential to advance the durability, efficiency, and resiliency of new and existing infrastructure. The simulation-based methods are extensively verified with novel experiments that evaluate the material limits and failure modes when compressed, bent, or stretched, considering fiber volume and orientation. The computer-based tools can be used to realistically assess the structural performance of innovative UHPC applications in buildings, bridges, and tunnels under natural hazards, leading to surpassed levels of structural efficiency and resiliency across civil infrastructure.
|
70 |
Mechanical Properties and Durability of Sustainable UHPC Using Industrial Waste Residues and Sea/Manufactured SandGe, W., Zhu, S., Yang, J., Ashour, Ashraf, Zhang, Z., Li, W., Jiang, H., Cao, D., Shuai, H. 26 July 2024 (has links)
Yes / Considering the continuous development of sustainable development, energy saving, and emission reduction concepts, it is very important to reduce concrete's cement content in order to improve its environmental impact. Using a reactive admixture to replace part of the cement in ultra-high-performance concrete (UHPC) can effectively improve the overall performance of the concrete and reduce carbon dioxide emissions, which is an important aspect of environmental protection. Here, industrial waste residue (fly ash and slag), sea sand (SS), and manufactured sand (MS) were used to produce UHPC under standard curing conditions to reduce the material cost and make it more environmentally friendly and sustainable. The effects of water-binder ratio, contents of cementitious materials, types of sands, and content of steel fibers on the mechanical performance of UHPC under standard curing were investigated experimentally. In addition, evaluations of the impermeability, chloride, and freeze-thaw resistance of various UHPCs produced were conducted by investigating the effects of various factors on the depth under hydraulic pressure and electric flux of UHPC, as well as the mass loss, relative dynamic modulus of elasticity, flexural strength, and compressive strength of UHPC specimens after freeze-thaw cycles. The obtained experimental results show that the SS-UHPC and MS-UHPC prepared by standard curing exhibit high strength, excellent impermeability, and chloride resistance. The frost-resistant grade of all groups of UHPCs prepared by standard curing was greater than F500 and had excellent freeze-thaw resistance, including those produced with local tap water or artificial seawater. The investigation presented in this paper could contribute to the production of new low-cost and environmentally friendly UHPCs and accelerate the application of UHPC in engineering structures.
|
Page generated in 0.0634 seconds