• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 427
  • 89
  • 76
  • 65
  • 65
  • 18
  • 15
  • 13
  • 11
  • 7
  • 6
  • 5
  • 5
  • 4
  • 2
  • Tagged with
  • 964
  • 964
  • 182
  • 67
  • 62
  • 60
  • 60
  • 60
  • 56
  • 56
  • 56
  • 56
  • 52
  • 51
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Droplet Impact on Dry, Superhydrophobic Surfaces with Micro-Scale Roughness Elements

Boufous, Nadine 09 December 2016 (has links)
Most aircraft accidents are caused by technical problems or weather-related issues. One cause of weather-related incidents is inlight icing, which can induce negative performance characteristics and endanger the operation of an airplane. Various researchers investigating the problem of inlight icing have proposed ice-phobic coatings as one viable solution. For this purpose, it is critical to study the behavior of a droplet impact on different types of surfaces. As an alternative to physical testing, three-dimensional numerical simulation using computational fluid dynamics offers a promising strategy for evaluating the effects of surface characteristics. Using the volume of fluid method, three simulations of high-speed droplet impact on superhydrophobic surfaces with and without micro-scale roughness elements, were generated. The simulations showed that, for the roughness configurations considered, the superhydrophobic surfaces with micro-scale roughness elements were significantly less effective at repelling the droplet than the smooth superhydrophobic surfaces.
82

Comparative analysis of high-speed rail in the United States and China

Spaziante, Alicia S. 19 March 2024 (has links)
High-speed rail (HSR) in most industrialized countries in Europe and Asia have proven profitable and increase GDP in primary, secondary and tertiary station locations, balance greenhouse gas emissions, maintain safety and temporal standards, and assuage traffic concerns of growing populations. The Metroliner’s short completion timeline and ability to demonstrate a successful product prior to appropriating or obligating funds propelled America’s passenger rail industry forward in congruence with establishing the Office of High-Speed Ground Transportation in 1965. However, the US’ rotating bipartisan political structure hinders hyper-expensive 20-year-long projects, as shown in California, Florida, and the Northeast Corridor (NEC). In contrast to this, China’s centralized government, dense city centers, and politically motivated expansion led to construction of the world’s largest HSR network with 37,900 kilometers of tracks in 2021 and 70,000 kilometers expected by 2035. While HSR in the US may be profitable in the NEC, governmental structure, infrastructure density, and high temporal and financial costs reduce plausibility for HSR despite proven positive effects.
83

Dynamics of High-Speed Planetary Gears with a Deformable Ring

Wang, Chenxin 17 October 2019 (has links)
This work investigates steady deformations, measured spectra of quasi-static ring deformations, natural frequencies, vibration modes, parametric instabilities, and nonlinear dynamics of high-speed planetary gears with an elastically deformable ring gear and equally-spaced planets. An analytical dynamic model is developed with rigid sun, carrier, and planets coupled to an elastic continuum ring. Coriolis and centripetal acceleration effects resulting from carrier and ring gear rotation are included. Steady deformations and measured spectra of the ring deflections are examined with a quasi-static model reduced from the dynamic one. The steady deformations calculated from the analytical model agree well with those from a finite element/contact mechanics (FE/CM) model. The spectra of ring deflections measured by sensors fixed to the rotating ring, space-fixed ground, and the rotating carrier are much different. Planet mesh phasing significantly affects the measured spectra. Simple rules are derived to explain the spectra for all three sensor locations for in-phase and out-of-phase systems. A floating central member eliminates spectral content near certain mesh frequency harmonics for out-of-phase systems. Natural frequencies and vibration modes are calculated from the analytical dynamic model, and they compare well with those from a FE/CM model. Planetary gears have structured modal properties due to cyclic symmetry, but these modal properties are different for spinning systems with gyroscopic effects and stationary systems without gyroscopic effects. Vibration modes for stationary systems are real-valued standing wave modes, while those for spinning systems are complex-valued traveling wave modes. Stationary planetary gears have exactly four types of modes: rotational, translational, planet, and purely ring modes. Each type has distinctive modal properties. Planet modes may not exist or have one or more subtypes depending on the number of planets. Rotational, translational, and planet modes persist with gyroscopic effects included, but purely ring modes evolve into rotational or one subtype of planet modes. Translational and certain subtypes of planet modes are degenerate with multiplicity two for stationary systems. These modes split into two different subtypes of translational or planet modes when gyroscopic effects are included. Parametric instabilities of planetary gears are examined with the analytical dynamic model subject to time-varying mesh stiffness excitations. With the method of multiple scales, closed-form expressions for the instability boundaries are derived and verified with numerical results from Floquet theory. An instability suppression rule is identified with the modal structure of spinning planetary gears with gyroscopic effects. Each mode is associated with a phase index such that the gear mesh deflections between different planets have unique phase relations. The suppression rule depends on only the modal phase index and planet mesh phasing parameters (gear tooth numbers and the number of planets). Numerical integration of the analytical model with time-varying mesh stiffnesses and tooth separation nonlinearity gives dynamic responses, and they compare well with those from a FE/CM model. Closed-form solutions for primary, subharmonic, superharmonic, and second harmonic resonances are derived with a perturbation analysis. These analytical results agree well with the results from numerical integration. The analytical solutions show suppression of certain resonances as a result of planet mesh phasing. The tooth separation conditions are analytically determined. The influence of the gyroscopic effects on dynamic response is examined numerically and analytically. / Doctor of Philosophy / Planetary gears in aerospace applications have thin ring gears for reducing weight. These lightweight ring gears deform elastically when transmitting power. At high speed, Coriolis and centripetal accelerations of planetary gears become significant. This work develops an analytical planetary gear model that takes account of an elastically deformable ring gear and speed-dependent gyroscopic (i.e., Coriolis) and centripetal effects. Steady deformations, measured spectra of quasi-static ring deformations, natural frequencies, vibration modes, parametric instabilities, and dynamic responses of planetary gears with equally-spaced planets are investigated with the analytical model. Steady deformations refer to quasi-static deflections that result from applied torques and centripetal acceleration effects. These steady deformations vary because of periodically changing mesh interactions. Such variation leads to cyclic stress that reduces system fatigue lives. This work evaluates planetary gear steady deformations with the analytical model and studies the effects of system parameters on the steady deformations. Ring deflections measured by sensors fixed to the rotating ring gear (e.g., a strain gauge), space-fixed ground (e.g., a displacement probe), and the rotating carrier have much different spectra. The planet mesh phasing, which is determined by gear tooth numbers and the number of planets, significantly influences these spectra. Simple rules are derived that govern the occurrence of spectral content in all the three measurements. Understanding these spectra is of practical significance to planetary gear engineers and researchers. Planetary gears have highly structured modal properties due to cyclic symmetry. Vibration modes are classified into rotational, translational, and planet modes in terms of the motion of central members (sun and carrier). The central members have only rotation for a rotational mode, only translation for a translational mode, and no motion for a planet mode. Translational modes have two subtypes, rotational modes have only one subtype, and planet modes may not exist or have one or more subtypes depending on the number of planets. For each subtype of modes, all planets have the same motion with a unique phase relation between different planets and the elastic ring gear has unique deformations. Understanding this modal structure is important for modal testing and resonant mode identification in dynamic responses. Sun-planet and ring-planet mesh interactions change periodically with mesh frequency. These mesh interactions are modeled as time-varying stiffnesses that parametrically excite the planetary gear system. Parametric instabilities, in general, occur when the mesh frequency or one of its harmonics is near twice a natural frequency or combinations of two natural frequencies. Closed-form expressions for parametric instability boundaries that bound the instability region are determined from the analytical model. Certain parametric instabilities are suppressed as a result of planet mesh phasing. Near resonances, vibration can become large enough that meshing teeth lose contact. The analytical model is extended to include the tooth separation nonlinearity. Closed-form approximations for dynamic responses near resonances are determined from the analytical model, and these analytical results compare well with those from numerical simulations of the analytical model. Tooth separation conditions are analytically determined. The influences of planet mesh phasing and Coriolis acceleration on dynamic responses near resonances are investigated numerically and analytically.
84

Testing and Modeling of Shock Mitigating Seats for High Speed Craft

Liam, Christopher Charles 18 May 2011 (has links)
This study conducted a series of tests on a shock mitigating seat designed for high speed craft using various input excitations to better understand the relationship between various seat and operational conditions, and the response of the seat. A seat model of the test seat is used for a parametric study of various spring, damping and operational configurations. A seat shake rig is implemented to simulate motions of multiple high-speed craft as well as various defined inputs. At each test input the occupant weight and suspension preload is varied and the response is analyzed to find changes in acceleration, which is representative of the changes in force and displacement. By representing the seat as a based-excitation two-degree-of-freedom system, we develop the equations of motion and model them in Simulink to analyze the effects of various spring rates and damping coefficients. Based on the results it is found that an increase in occupant mass results in a decrease in observed acceleration. Increasing suspension preload is found to be detrimental to the mitigating abilities of the seat, changing the dynamics to those similar of a rigid-mounted seat. An analysis of the defined inputs resulted in confirming various seat characteristics. The analysis of the Simulink model revealed that increasing the spring rate results in an increase in acceleration. An increase in damping coefficient resulted in an increase in acceleration and ride harshness. / Master of Science
85

Modeling and Simulation of a Video-on-Demand Network Implementing Adaptive Source-Level Control and Relative Rate Marking Flow Control for the Available Bit Rate Service

Taylor, Elvin Lattis Jr. 16 January 1998 (has links)
The Available Bit Rate (ABR) service class for the Asynchronous Transfer Mode (ATM) protocol was originally designed to manage data traffic. ABR flow control makes no guarantees concerning cell transfer delay or cell delay variation. A closed-loop feedback mechanism is used for traffic management. To use this class of service for video transport, the video source will accept feedback from the network and adapt its source rate based on this status information. The objective of this research is to assess the ability of the ATM ABR service class to deliver Moving Picture Experts Group version 1 (MPEG-1) video. Three approaches to source-level control are compared: (i) arbitrary loss or no control method, (ii) selective discard of MPEG B-pictures, and (iii) selective discard of MPEG B- and P-pictures. Performance is evaluated based on end-to-end delay, congested queue occupancy levels, network utilization, and jitter. A description of the investigation, assumptions, limitations, and results of the simulation study are included. / Master of Science
86

Advancements of Stepped Planing Hulls

Lee, Evan Joseph 09 December 2014 (has links)
The straight line calm water performance of stepped planing hulls has been studied experimentally, by prediction method, and numerically. A model test was conducted to provide a systematic understanding of the effects that displacement and step location have on the performance of a stepped planing hull. Ten different step configurations were tested at three different displacements and over a range of four different speeds in calm water. Seven of these configurations were tested at two different Longitudinal Center of Gravity (LCG) locations. Of all the configurations tested, the stepped hull configurations showed reduced resistance compared to the unstepped hull. The configurations with the largest step height aft showed the least amount of resistance over the speed range tested. Increasing displacement and shifting LCG had similar effects on craft performance for both stepped and unstepped hulls. The current stepped hull prediction method was expanded to include a three dimension wave profile and the ability for the stagnation line to cross the step. Using previous model test data and existing two dimension wave profile equations, a single equation was developed to predict the three dimension wave profile aft of a step. Formulations were added to Savitsky's planing prediction method to include very high speed craft and chines dry conditions. Lastly, two simulations were performed using two computational fluid dynamics numerical tools, OpenFOAM, and NFA. The results of these simulations were compared to the experimental test results to assess each code's relative strengths and weaknesses for use in detail design of stepped planing craft. / Ph. D.
87

Supersonic Combustion of Solid Fuels

Schlussel, Ethan Jacob 22 November 2023 (has links)
A direct connect, supersonic solid fuel combustor with a cavity is explored in the context of understanding characteristics related to ignition, regression rate, combustion, and flow fields for application in advancing solid fuel scramjet research. 3D printed, polymethylmethacrylate fuel grains are loaded into both fully enclosed and optically accessible combustors. The ignition characteristics are investigated by systematically varying the internal geometry of the fuel grain to develop a flammability map with respect to non-dimensional geometric parameters. Results reveal that a longer and larger flameholding cavity creates favorable conditions for ignition and sustained combustion. The inlet temperature is also systematically varied to extend the available literature on the supersonic combustion of solid fuels to lower temperature operating conditions and show that a higher inlet temperature is conducive to sustained combustion and higher regression rates. The regression rates of the fuel grains are measured to determine a concentration of regression in the flameholding cavity along the angle of the downstream side of the cavity. Ignition and sustained combustion rely heavily on the fuel in the flameholding cavity. A decreasing regression rate is observed as the fuel regresses by measuring the regression rate at discrete time intervals during a firing of the optical combustor. The optical combustor is also subject to various high-frequency imaging techniques. Shadowgraph imaging shows the changes in density of the flow field and finds a normal shock in the constant area section. CH* chemiluminescence imaging provides novel observations of the concentrated areas of combustion along the fuel grain wall by highlighting the heat release from combustion. A high intensity of CH* radicals is in the upstream section of the flameholding cavity. When considered in the context of the concentration of regression, this indicates that the recirculation zone pulls fuel from the downstream section of the cavity, combusts it in the upstream section of the flameholding cavity, then expels the higher enthalpy gas into the core flow. Additionally, observing the flow provides insight into the flow dynamics of opposing cavities in a supersonic flow field. The symmetry of the flow field is found to be reliant on the stability of the flameholding cavity length to depth ratio. / Master of Science / A solid fuel scramjet has the potential to be the simplest and most cost effective method of achieving hypersonic flight. A liquid fuel scramjet has been demonstrated in free flight, but liquid fuels present many issues involving safety and storage that can be eliminated by introducing solid fuels. Supersonic combustion, or burning fuel in an air flow moving faster than the speed of sound, is a complicated subject due to the irregularity of flow fields and the requirement of combustion to occur at a high rate. The research within this thesis presents many novel technologies that have never been presented in published literature in the context of the supersonic combustion of solid fuels. By conducting ground testing of a solid fuel scramjet, characteristics of the combustion can be studied to expand the available literature in the field to new fuel geometries and inlet conditions. The ignition and sustained combustion of a solid fuel scramjet is extremely reliant on the initial geometry of the fuel and the initial temperature of the flow. This research advances the field of supersonic combustion of solid fuels by developing an optically accessible combustor using quartz windows. These characteristics of supersonic combustion are investigated using highspeed video recording. The results of these techniques provide insight into favorable fuel geometries and inlet conditions. Additionally, patterns observed in the flow field explain concentrations of combustion and fuel consumption.
88

Full-field vibrometry by high-speed digital holography for middle-ear mechanics

Dobrev, Ivo Tsvetanov 21 July 2014 (has links)
"Hearing loss affects approximately 1 in 10 people in the world and this percentage is increasing every year. Some of the most common causes of hearing loss are disorders of the middle-ear. Early detection and diagnosis of hearing loss as well as research to understand the hearing processes depend on medical and research tools for quantification of hearing capabilities and the function of the middle-ear in the complex acousto-mechanical transformation of environmental sounds into vibrations of the middle-ear, particular of the human tympanic membrane (TM or eardrum). Current ear exams assess the state of a patient’s hearing capabilities mainly based on qualitative evaluation of the healthiness of the TM. Existing quantitative clinical methods for description of the motion of the TM are limited to either average acoustic estimates (admittance or reflectance) or single-point displacement measurements. Such methods could leave examiners and researchers blind to the complex spatio-temporal response of the nanometer scale displacements of the entire TM. Current state-of-the-art medical research tools provide full-field nanometer displacement measurements of the surface of the human TM excited by steady state (tonal) stimuli. However, to fully understand the mechanics of hearing, and the complex acousto-mechanical characteristics of TM in particular, new tools are needed for full-field high-speed characterization of the nanometer scale displacements of the human TM subjected to impulse (wideband) acoustic excitation. This Dissertation reports the development of a new high-speed holographic system (HHS) for full-field nanometer transient (i.e., > 10 kHz) displacement measurement of the human middle-ear and the tympanic membrane, in particular. The HHS allows spatial (i.e., >500k data points) and temporal (i.e., > 40 kHz) resolutions that enable the study of the acoustical and mechanical characteristics of the middle-ear at a level of detail that have never been reached before. The realization of the HHS includes the development and implementation of novel phase sampling and acquisition approaches that allow the use of state-of-the-art high-resolution (i.e., >5 MP) and high-speed (> 80,000 fps) cameras through modular and expandable control architectures. The development of novel acquisition approaches allows the use of conventional speed (i.e., <20 fps) cameras to realize high-temporal resolutions (i.e., <15 us) at equivalent sampling rates of > 50,000 fps with minimum hardware cost and modifications. The design and implementation of novel spatio-temporal phase sampling methods utilize the high temporal resolution (i.e., < 5 us exposure) and frame rate (i.e., >80,000 fps) of high-speed cameras without imposing constraints on their spatial resolution (i.e., >20 um pixel size). Additionally, the research and in-vivo applications capabilities of the HHS are extended through the development and implementation of a holographic otoscope head (OH) and a mechatronic otoscope positioner (MOP). The large (i.e., > 1 GB with > 8x10^9 parameters) spatio-temporal data sets of the HHS measurements are automatically processed by custom parallel data mining and interpretation (PDMI) methods, which allow automatic quantification of medically relevant motion parameters (MRMPs), such as modal frequencies, time constants, and acoustic delays. Such capabilities could allow inferring local material properties across the surface of the TM. The HHS is a new medical tool that enables otologists to improve the quality of diagnosis and treatments as well as provides researchers with spatio-temporal information of the hearing process at a level of detail never reached before. "
89

Development of Improved Traveler Survey Methods for High-Speed Intercity Passenger Rail Planning

Sperry, Benjamin 2012 May 1900 (has links)
High-speed passenger rail is seen by many in the U.S. transportation policy and planning communities as an ideal solution for fast, safe, and resource-efficient mobility in high-demand intercity corridors. To expand the body of knowledge for high-speed intercity passenger rail in the U.S., the overall goal of this dissertation was to better understand the demand for high-speed intercity passenger rail services in small- or medium-sized intermediate communities and improve planners' ability to estimate such demand through traveler surveys; specifically, the use of different experimental designs for stated preference questions and the use of images to describe hypothetical travel alternatives in traveler surveys. In pursuit of this goal, an Internet-based survey was distributed to residents of Waco and Temple, two communities located along the federally-designated South Central High-Speed Rail Corridor in Central Texas. A total of 1,160 surveys were obtained from residents of the two communities. Mixed logit travel mode choice models developed from the survey data revealed valuable findings that can inform demand estimates and the design of traveler surveys for high-speed intercity passenger rail planning activities. Based on the analysis presented in this dissertation, ridership estimates for new high-speed intercity passenger rail lines that are planned to serve intermediate communities should not assume that residents of these communities have similar characteristics and values. The d-efficient stated preference experimental design was found to provide a mode choice model with a better fit and greater significance on key policy variables than the adaptive design and therefore is recommended for use in future surveys. Finally, it is recommended that surveys should consider the use of images of proposed train services to aid respondent decision-making for stated preference questions, but only if the images used in the survey depict equipment that could be realistically deployed in the corridor.
90

Marketing Strategies of Passenger Service in High Speed Rail Transport ¡V A case of Taiwan High Speed Rail Corporation

Lee, I-Chen 23 July 2007 (has links)
Safe, high speed, on time, high transport volume, minimum land use, low energy and low pollution are unique features of high-speed rail transport. In countries reaching a threshold level of economic development, traditional railway system will no longer satisfy the need of the mass in cross-township transport. As the cost of energy and demand for environmental protection escalates, high-speed rails have gradually surfaced as a competitive mode of transport in cross-township traveling. Furthermore, it is able to bring regional developments. However, high-speed rail transport is a new industry in Taiwan. There has been no hands-on experience in the passenger service. How then, through the development of marketing strategy and implementation, so as to promote the service quality and customer satisfaction, has been a primary operations objective of high-speed railways. This motivated the need to study the service marketing strategy in high-speed rail transport. The Taiwan High Speed Rail Corporation (THSRC) is the subject of this study. The 7P marketing mix of the service industry was the theoretical foundation. Historical data on the service and marketing strategies of high-speed railways in countries such as Japan, France and Germany were collected. Questions for conducting in-depth interviews with experts in high-speed railway were devised from the study of these historical data. In addition, a survey questionnaire was developed from the data collected via interviews. Passengers taking the Taiwan High Speed Rail were surveyed for statistical analysis. Finally, an appropriate service and marketing strategy was developed. The results show, the Taiwan High Speed Rail needs to first build a brand image of safety and credibility. It needs to schedule and allocate headways in line with its target passenger group and develop a comprehensive product strategy for its target customers. Having done that, it needs to propose competitive price strategies and promotion programs on corporate customers and travel agencies. Making use of the comprehensive mobile telephony coverage and internet network, and more convenient channels should be further developed. Furthermore, the THSRC needs to solve the problem of passenger transfers in station areas gradually. This is necessary to promote the overall service quality, satisfy divergent needs of the target market, and build up a recognized brand in high-speed railway transport. Finally, the recommendations made to THSRC were compared with service and marketing strategies in other countries. It is hoped that the results would be able to provide THSRC and any other countries planning to develop high-speed railway, some practical reference in planning their marketing strategies.

Page generated in 0.0395 seconds