• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalytic Reaction Of Propylene To Propylene Oxide On Various Catalysts

Kalyoncu, Sule 01 September 2012 (has links) (PDF)
Throughout this thesis work, various catalysts were investigated with combinational approach to develop highly active and selective novel catalysts for direct epoxidation of propylene to PO using molecular oxygen. The promoted and un-promoted silver (Ag), copper (Cu), ruthenium (Ru), manganese (Mn) mono and multimetallic catalytic systems over different silica supports were prepared via sol-gel method and incipient wetness method. In addition to support effect, the effects of different promoters on the catalytic performances of these catalyst candidates were investigated. The study showed that commercial silica (c-SiO2) is the most effective support when compared to silica (SiO2) and silica synthesized with templete (t-SiO2). Among bimetallic catalytic systems containing Ag, Ru, Mn and Cu metals, c-SiO2 supported Cu-Ru catalyst was determined as the most active catalytic system. In addition, the most effective v catalyst and promoter in the epoxidation reaction was determined as NaCI promoted Cu-Ru catalyst supported over c-SiO2 with 35.98% selectivity&amp / 9.55% conversion (3.44% yield) at 3000C and 0.5 feed gas ratio (C3H6/O2).. In the study, the selected catalysts showed low and high PO productivity were also investigated by characterization techniques such as XRD, XPS, BET and FTIR.It was inferred from characterization tests that bimetallic systems reveal a synergistic behavior by exposing more active sites on the silica support material with respect to their monometallic counterparts. Besides, NaCl catalytic promoter has a strong interaction particularly with the Cu sites on the Cu/Ru/SiO2 catalyst surface, altering the electronic structure of Cu sites that favors to PO production.
2

Development Of Sol-gel Catalysts By Use Of Fast Combinatorial Synthesis And High Throughput Testing Techniques For Catalytic Oxidation Of Propylene To Propylene Oxide

Duzenli, Derya 01 August 2003 (has links) (PDF)
Propylene oxide (PO) is an important raw material for the chemical industry, which is produced commercially by the chlorohydrin process and hydroperoxide process. However the deficiencies in these processes have given rise to considerable interest in the development of a direct route to PO that does not produce by-products or coproducts. The development of novel, active and selective catalysts for gas phase oxidation of propylene using molecular oxygen were studied via testing a large number of catalysts by high-throughput screening method over combinatorially prepared different catalytic system in this study. v The promoted and un-promoted silver (Ag), copper (Cu), manganese (Mn) mono and bimetallic catalytic system over high and low surface area silica, alumina, titanium oxide and titanium-silicate supports were prepared by single step sol-gel method and by incipient wetness method. The study to determine the most effective catalyst and promoter in the epoxidation reaction with different reaction conditions, showed that potassium (K)- promoted Cu metal supported over high surface area silica favored the PO production at a high reaction temperature (350 &deg / C) and oxygen rich atmosphere (C3H6/O2=1.0). The catalyst showed high and low propylene oxide productivity was investigated by some of the characterization techniques. The highlydispersed copper particle over silica support was determined by XRD, TEM and XPS techniques. The only change between promoted and un-promoted catalyst was found out in the temperature dependence of propylene consumption and PO production rate. It was inferred that potassium (K) only neutralizes the acid sites of silica.
3

Development of stirred well filtration as a high-throughput technique for downstream bioprocessing

Kazemi, Amir Sadegh 11 1900 (has links)
Micro-scale processing (MSP) techniques are miniaturized version of upstream and downstream conventional unit operations that are designed to accelerate the pace of bioprocess design and development. Previous ‘dead end’ filtration studies have demonstrated the usefulness of this concept for membrane filtration processes. However, these experiments were performed without stirring which is the most common strategy to control the effects of concentration polarization and fouling on filtration performance. In this work, the pressure-driven stirred conditions of a conventional stirred-cell module were integrated with a 96-well filter plate to develop a high throughput technique called ‘stirred-well filtration’ (SWF). The design allowed for up to eight constant flux filtration experiments to be conducted at once using a multi-rack programmable syringe pump and a magnetic lateral tumble stirrer. An array of pressure transducers was used to monitor the transmembrane pressure (TMP) in each well. The protein sieving behavior and fouling propensity of Omega™ ultrafiltration membranes were assessed via a combination of hydraulic permeability measurements and protein sieving tests in constant filtrate flux mode. The TMP profile during filtration of bovine serum albumin (BSA) solution was strongly dependent on the stirring conditions – for example the maximum TMP in the stirred wells were an average of 7.5, 3.8, and 2.6 times lower than those in the unstirred wells at filtrate fluxes of 12, 36, and 60 LMH (5, 15, and 25 μL/min) respectively. The consistency of the data across different wells for the same stirring condition was very good. To demonstrate the effectiveness of the SWF technique, the eight tests for a simple 2^2 factorial design-of-experiments (DOE) test with duplicates was run to evaluate the effect of solution pH and salt concentration on protein filtration. The combination of SWF with statistical methods such as DOE is shown to be an effective strategy for high-throughput optimization of membrane filtration processes. / Dissertation / Master of Applied Science (MASc)

Page generated in 0.0851 seconds