Spelling suggestions: "subject:"higherorder touchdown automata"" "subject:"higher.under touchdown automata""
1 |
Saturation methods for global model-checking pushdown systemsHague, Matthew January 2009 (has links)
Pushdown systems equip a finite state system with an unbounded stack memory, and are thus infinite state. By recording the call history on the stack, these systems provide a natural model for recursive procedure calls. Model-checking for pushdown systems has been well-studied. Tools implementing pushdown model-checking (e.g. Moped) are an essential back-end component of high-profile software model checkers such as SLAM, Blast and Terminator. Higher-order pushdown systems define a more complex memory structure: a higher-order stack is a stack of lower-order stacks. These systems form a robust hierarchy closely related to the Caucal hierarchy and higher-order recursion schemes. This latter connection demonstrates their importance as models for programs with higher-order functions. We study the global model-checking problem for (higher-order) pushdown systems. In particular, we present a new algorithm for computing the winning regions of a parity game played over an order-1 pushdown system. We then show how to compute the winning regions of two-player reachability games over order-n pushdown systems. These algorithms extend the saturation methods of Bouajjani, Esparza and Maler for order-1 pushdown systems, and Bouajjani and Meyer for higher-order pushdown systems with a single control state. These techniques begin with an automaton recognising (higher-order) stacks, and iteratively add new transitions until the automaton becomes saturated. The reachability result, presented at FoSSaCS 2007 and in the LMCS journal, is the main contribution of the thesis. We break the saturation paradigm by adding new states to the automaton during the iteration. We identify the fixed points required for termination by tracking the updates that are applied, rather than by observing the transition structure. We give a number of applications of this result to LTL model-checking, branching-time model-checking, non-emptiness of higher-order pushdown automata and Büchi games. Our second major contribution is the first application of the saturation technique to parity games. We begin with a mu-calculus characterisation of the winning region. This formula alternates greatest and least fixed point operators over a kind of reachability formula. Hence, we can use a version of our reachability algorithm, and modifications of the Büchi techniques, to compute the required result. The main advantages of this approach compared to existing techniques due to Cachat, Serre and Vardi et al. are that it is direct and that it is not immediately exponential in the number of control states, although the worst-case complexity remains the same.
|
2 |
Puissance expressive des preuves circulaires / Expressive power of circular proofsFortier, Jerome 19 December 2014 (has links)
Cette recherche vise à établir les propriétés fondamentales d'un système formel aux preuves circulaires introduit par Santocanale, auquel on a rajouté la règle de coupure. On démontre, dans un premier temps, qu'il y a une pleine correspondance entre les preuves circulaires et les flèches issues des catégories dites µ-bicomplètes. Ces flèches sont celles que l'on peut définir purement à partir des outils suivants: les produits et coproduits finis, les algèbres initiales et les coalgèbres finales. Dans la catégorie des ensembles, les preuves circulaires dénotent donc les fonctions qu'on peut définir en utilisant les produits cartésiens finis, les unions disjointes finies, l'induction et la coinduction. On décrit également une procédure d'élimination des coupures qui produit, à partir d'une preuve circulaire finie, une preuve sans cycles et sans coupures, mais possiblement infinie. On démontre que l'élimination des coupures fournit une sémantique opérationnelle aux preuves circulaires, c'est-à-dire qu'elle permet de calculer les fonctions dénotées par celles-ci, par le moyen d'une sorte d'automate avec mémoire. Enfin, on s'intéresse au problème de la puissance expressive de cet éliminateur de coupures, c'est-à-dire à la question de caractériser la classe des expressions qu'il peut calculer. On démontre, par une simulation, que l'éliminateur des coupures est strictement plus expressif que les automates à pile d'ordre supérieur. / This research aims at establishing the fundamental properties of a formal system with circular proofs introduced by Santocanale, to which we added the cut rule. We first show that there is a full correspondence between circular proofs and arrows from the so-called µ-bicomplete categories. These arrows are those that can be defined purely from the following tools: finite products and coproducts, initial algebras and final coalgebras. In the category of sets, circular proofs denote functions that one can define by using finite cartesian products, finite disjoint unions, induction and coinduction. We also describe a cut-elimination procedure that produces, from a given finite circular proof, a proof without cycles and cuts, but which may be infinite. We prove that cut-elimination gives an operational semantics to circular proofs, which is to say that they allow to compute the functions denoted by them, by using a sort of automaton with memory. Finally, we are interested in finding the expressive power of that cut-eliminating automaton. In other words, we want to characterize the class of functions that it can compute. We show, through a simulation, that the cut-eliminating automaton is strictly more expressive than higher-order pushdown automata.
|
Page generated in 0.0716 seconds