• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Partial differential equations methods and regularization techniques for image inpainting / Restauration d'images par des méthodes d'équations aux dérivées partielles et des techniques de régularisation

Theljani, Anis 30 November 2015 (has links)
Cette thèse concerne le problème de désocclusion d'images, au moyen des équations aux dérivées partielles. Dans la première partie de la thèse, la désocclusion est modélisée par un problème de Cauchy qui consiste à déterminer une solution d'une équation aux dérivées partielles avec des données aux bords accessibles seulement sur une partie du bord de la partie à recouvrir. Ensuite, on a utilisé des algorithmes de minimisation issus de la théorie des jeux, pour résoudre ce problème de Cauchy. La deuxième partie de la thèse est consacrée au choix des paramètres de régularisation pour des EDP d'ordre deux et d'ordre quatre. L'approche développée consiste à construire une famille de problèmes d'optimisation bien posés où les paramètres sont choisis comme étant une fonction variable en espace. Ceci permet de prendre en compte les différents détails, à différents échelles dans l'image. L'apport de la méthode est de résoudre de façon satisfaisante et objective, le choix du paramètre de régularisation en se basant sur des indicateurs d'erreur et donc le caractère à posteriori de la méthode (i.e. indépendant de la solution exacte, en générale inconnue). En outre, elle fait appel à des techniques classiques d'adaptation de maillage, qui rendent peu coûteuses les calculs numériques. En plus, un des aspects attractif de cette méthode, en traitement d'images est la récupération et la détection de contours et de structures fines. / Image inpainting refers to the process of restoring a damaged image with missing information. Different mathematical approaches were suggested to deal with this problem. In particular, partial differential diffusion equations are extensively used. The underlying idea of PDE-based approaches is to fill-in damaged regions with available information from their surroundings. The first purpose of this Thesis is to treat the case where this information is not available in a part of the boundary of the damaged region. We formulate the inpainting problem as a nonlinear boundary inverse problem for incomplete images. Then, we give a Nash-game formulation of this Cauchy problem and we present different numerical which show the efficiency of the proposed approach as an inpainting method.Typically, inpainting is an ill-posed inverse problem for it most of PDEs approaches are obtained from minimization of regularized energies, in the context of Tikhonov regularization. The second part of the thesis is devoted to the choice of regularization parameters in second-and fourth-order energy-based models with the aim of obtaining as far as possible fine features of the initial image, e.g., (corners, edges, … ) in the inpainted region. We introduce a family of regularized functionals with regularization parameters to be selected locally, adaptively and in a posteriori way allowing to change locally the initial model. We also draw connections between the proposed method and the Mumford-Shah functional. An important feature of the proposed method is that the investigated PDEs are easy to discretize and the overall adaptive approach is easy to implement numerically.
2

New PDE models for imaging problems and applications

Calatroni, Luca January 2016 (has links)
Variational methods and Partial Differential Equations (PDEs) have been extensively employed for the mathematical formulation of a myriad of problems describing physical phenomena such as heat propagation, thermodynamic transformations and many more. In imaging, PDEs following variational principles are often considered. In their general form these models combine a regularisation and a data fitting term, balancing one against the other appropriately. Total variation (TV) regularisation is often used due to its edgepreserving and smoothing properties. In this thesis, we focus on the design of TV-based models for several different applications. We start considering PDE models encoding higher-order derivatives to overcome wellknown TV reconstruction drawbacks. Due to their high differential order and nonlinear nature, the computation of the numerical solution of these equations is often challenging. In this thesis, we propose directional splitting techniques and use Newton-type methods that despite these numerical hurdles render reliable and efficient computational schemes. Next, we discuss the problem of choosing the appropriate data fitting term in the case when multiple noise statistics in the data are present due, for instance, to different acquisition and transmission problems. We propose a novel variational model which encodes appropriately and consistently the different noise distributions in this case. Balancing the effect of the regularisation against the data fitting is also crucial. For this sake, we consider a learning approach which estimates the optimal ratio between the two by using training sets of examples via bilevel optimisation. Numerically, we use a combination of SemiSmooth (SSN) and quasi-Newton methods to solve the problem efficiently. Finally, we consider TV-based models in the framework of graphs for image segmentation problems. Here, spectral properties combined with matrix completion techniques are needed to overcome the computational limitations due to the large amount of image data. Further, a semi-supervised technique for the measurement of the segmented region by means of the Hough transform is proposed.

Page generated in 0.0463 seconds