• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of TLRs, Hippo-YAP1 Signaling, and microRNAs in Cardiac Repair and Regeneration of Damaged myocardium During Ischemic Injury

Wang, Xiaohui 01 August 2017 (has links) (PDF)
Cardiovascular disease is a leading cause of death in the United States. Toll-like receptor (TLR)-mediated pathways have been demonstrated to play a role in myocardial ischemia/reperfusion (I/R) injury. We and others have shown that PI3K/Akt signaling is involved in regulating cellular survival and protecting the myocardium from I/R induced injury. In this dissertation, we provide compelling evidence that miR-125b serves to “fine tune” TLR mediated NF-kB responses by repressing TNF-a and TRAF6 expression. We constructed lentiviral expressing miR-125b, delivered it into the myocardium. The data showed that delivery of lentivirus expressing miR-125b significantly reduces myocardial infarct size and improves cardiac function in I/R hearts. Mechanistic studies demonstrated that miR-125b negatively regulates TLR mediated NF-kB activation pathway by repressing TNF-a and TRAF6 expression in the myocardium. We also observed that transfection of the myocardium with lentivirus expressing miR-214 markedly attenuates I/R induced myocardial infarct size and cardiac dysfunction. We demonstrated that miR-214 activates PI3K/Akt signaling by targeting PTEN expression in the myocardium. We also investigated the role of TLR3 in neonatal heart repair and regeneration following myocardial infarction (MI). Wild type (WT) neonatal mice showed fully cardiac functional recovery and small infarct size, while TLR3 deficient mice exhibited impaired cardiac functional recovery and large infarct area after MI. Poly (I:C), a TLR3 ligand, administration significantly enhances glycolysis, YAP1 activation and the proliferation of WT neonatal cardiomyocytes. 2-deoxyglucose (2-DG), a glycolysis inhibitor treatment abolished cardiac functional recovery and YAP1 activation in neonatal mice after MI. In vitro either inhibition of glycolysis by 2-DG or inhibition of YAP1 activation prevents Poly (I:C) induced YAP1 activation and neonatal cardiomyocyte proliferation. Importantly, YAP1 activation increases miR-152 expression, leading to cardiomyocyte proliferation through suppression P27kip1 and DNMT1 expression. We conclude that microRNAs play an important role in TLR modulation induced protection against myocardial I/R injury by increasing the activation of PI3K/Akt signaling pathway, decreasing TLR/NF-kB mediated inflammatory response, and suppressing activation of apoptotic signaling following myocardial I/R injury. In addition, TLR3 is an essential for neonatal heart repair and regeneration after myocardial infarction. TLR3 modulation could be a novel strategy for heart regeneration and repair.
2

Etude de la signalisation Hippo/YAP dans les cellules gliales de Müller en conditions physiologiques et pathologiques de dégénérescence rétinienne chez la souris / Study of Hippo/YAP signaling in Müller glial cells under physiological or pathological degenerative conditions in the mouse retina

Hamon, Annaïg 19 December 2017 (has links)
Les maladies dégénératives de la rétine sont une des causes principales de cécité. Parmi différentes stratégies thérapeutiques actuellement étudiées, notre équipe s’intéresse au potentiel régénératif de la rétine. Une source cellulaire d'intérêt sont les cellules de Müller, principal type de cellules gliales de la rétine, capables de se réactiver en cas de dégénérescence et d’adopter certaines caractéristiques de cellules souches. Elles entrent alors dans un état appelé gliose réactive. Tandis que chez certaines espèces comme le poisson, elles permettent la régénération de la rétine, elles ont des capacités régénératives très limitées et inefficaces chez les mammifères. Une meilleure connaissance des mécanismes moléculaires régissant la gliose réactive des cellules de Müller est donc essentielle si l’on veut identifier des cibles thérapeutiques capables de stimuler le potentiel de régénération de ces cellules. Dans ce contexte, le but de mon projet de thèse a été d’étudier le rôle du co-facteur de transcription YAP dans la réactivation des cellules de Müller. Cette protéine est l’effecteur de la voie de signalisation Hippo, connue pour son implication dans la régulation des cellules souches et la régénération de certains organes.Dans un premier temps, nous avons réalisé une analyse transcriptomique qui a montré que la voie Hippo/YAP est une des principales voies dérégulées dans un modèle de dégénérescence rétinienne chez la souris. Nous avons ensuite montré que la protéine YAP est spécifiquement exprimée dans les cellules de Müller et que son expression et son activité transcriptionnelle sont augmentées au cours de la dégénérescence lorsque les cellules de Müller deviennent réactives. Ces données suggèrent pour la première fois un lien entre YAP et la gliose réactive dans la rétine. Par conséquent, dans un second temps, mon projet de thèse a consisté en l’étude fonctionnelle de YAP dans les cellules de Müller. Dans ce but, nous avons généré par croisements chez la souris un modèle inductible de délétion du gène Yap spécifiquement dans ces cellules. Ce modèle a permis de montrer qu’en absence de Yap en conditions physiologiques, plusieurs gènes spécifiques des cellules de Müller sont dérégulés, suggérant un dysfonctionnement de ces cellules. L’étude phénotypique a permis de révéler que ces dérégulations moléculaires conduisent à un vieillissement prématuré des cellules de Müller et à une baisse de la vision chez les souris âgées. Ces données suggèrent que YAP est requis pour le fonctionnement normal des cellules gliales de Müller. Nous avons ensuite examiné l’impact de la perte de Yap dans les cellules de Müller en conditions de dégénérescence des photorécepteurs. Une analyse transcriptomique a permis de montrer que différents aspects de la réponse moléculaire des cellules de Müller réactives sont affectés. Parmi les processus biologiques dérégulés, nous nous sommes intéressés à la régulation de la prolifération cellulaire. Nous avons montré que YAP est nécessaire à l’augmentation de l’expression de gènes associés à la réentrée dans le cycle cellulaire de la glie de Müller. Par ailleurs, nos résultats suggèrent que des composants de la voie de signalisation EGFR, connue pour son rôle central dans la réactivation des cellules de Müller, sont régulés par YAP.Dans l’ensemble, ces résultats révèlent l’importance de YAP (i) dans le fonctionnement des cellules de Müller en conditions physiologiques pour maintenir l’homéostasie rétinienne, et (ii) dans la régulation des processus de réactivation de ces cellules en conditions dégénératives. De plus, ces données permettent de proposer un modèle selon lequel YAP serait impliqué dans le contrôle de la réentrée des cellules de Müller dans le cycle cellulaire via une interaction avec la voie de signalisation EGFR. Ce travail a donc contribué à approfondir nos connaissances du réseau de signalisation impliqué dans la réactivation des cellules de Müller de la rétine des mammifères. / Retinal dystrophies are one of the main causes of blindness. Among the different therapeutic strategies currently studied, our team is interested in the regenerative potential of endogenous retinal cells. A cellular source of interest are Müller cells, which are the main type of glial cells in the retina. These cells are able to reactivate in case of retinal degeneration and adopt various characteristics of stem cells. They enter a state called reactive gliosis. While in some species such as the fish, they allow the complete regeneration of the retina, they have very limited and ineffective regenerative capacities in mammals. Increasing our knowledge of the complex molecular response of Müller cells to retinal degeneration is thus essential for the development of promising new therapeutic strategies. In this context, the aim of my thesis project was to study the role of the co-transcription factor YAP in Müller cells reactivation. This protein is the main effector of the Hippo signaling pathway which is a crucial player in the field of stem cell biology and regeneration.As a first step, we performed a transcriptomic analysis, which revealed that the Hippo/YAP pathway is one of the main signaling deregulated in a mouse model of photoreceptor degeneration. In particular, we found that YAP is specifically expressed in Müller cells and strongly upregulated upon retinal degeneration, when these cells are reactivated. We thus uncovered for the first time a link between the Hippo/YAP pathway and reactive gliosis in the retina. Consequently, the second part of my thesis project was to undertake a functional study of YAP in Müller cells. For this purpose, we generated, by crossing, a mouse model allowing for Yap conditional knockout specifically in these cells. This model allowed us to show that Yap deletion leads to deregulation of several Müller cell specific genes. A phenotypic analysis revealed that these molecular deregulations lead to premature aging of Müller cells and visual defects in old mice. These results suggest that YAP is required for normal function of Müller glial cells. We then studied the impact of Yap deletion in Müller cells under degenerative conditions. A transcriptomic analysis revealed that various aspects of the molecular response of reactive Müller cells are affected in the absence of Yap. Among the deregulated biological processes, we focussed in particular in the regulation of cell proliferation. We found that YAP is required to trigger cell cycle gene upregulation that occurs in Müller glial cells following photoreceptor cell death. Furthermore, our results suggest that some components of the EGFR signaling pathway, which is known for its central role in the reactivation of Müller cells in pathological conditions, are regulated by YAP in Müller cells.Taken together, these results highlight the importance of YAP (i) in Müller cell function under physiological conditions to maintain retinal homeostasis, and (ii) in the regulation of Müller cell reactivation process under degenerative conditions. Moreover, these data allow us to propose a model in which YAP would be involved in the control of Müller glia cell cycle re-entry through its interaction with the EGFR signaling pathway. Therefore, this work has contributed to increase our knowledge of the signaling network involved in the reactivation of Müller cells in the mammalian retina.

Page generated in 0.0605 seconds