Spelling suggestions: "subject:"hippocampus (brain) -- hophysiology"" "subject:"hippocampus (brain) -- ecophysiology""
11 |
Hippocampal CA1 activation during object memory encoding in the novel object recognition taskUnknown Date (has links)
Transcription and translation of proteins are required for the consolidation of episodic memory. Arc, an effector immediate early gene, has been linked to synaptic plasticity following learning and memory. It is well established that the rodent hippocampus is essential for processing spatial memory, but its role in processing object memory is a point of contention. Using immunohistochemical techniques, hippocampal sections were stained for arc proteins in the CA1 region of the dorsal hippocampus in mice following two variations of the novel object recognition (NOR) task. Results suggest mice that acquired strong object memory showed significant hippocampal activation. In mice that acquired weak object memory, hippocampal activation was not significantly different from controls. Arc expression was also examined in other hippocampal sub-regions, as well as in the perirhinal cortex. These results suggest that the mice must acquire a threshold amount of object information before the hippocampal CA1 region is engaged. / Includes bibliography. / Thesis (M.A.)--Florida Atlantic University, 2015 / FAU Electronic Theses and Dissertations Collection
|
12 |
Roles of BDNF and tPA/plasmin system in the long-term hippocampal plasticity. / CUHK electronic theses & dissertations collectionJanuary 2004 (has links)
Pang Petti. / "August 2004." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
13 |
The hippocampus, retrograde amnesia, and memory deconsolidationEpp, Jonathon, University of Lethbridge. Faculty of Arts and Science January 2005 (has links)
There are numerous clinical and experimental accounts of retrograde and anterograde amnesia resulting from damage to the hippocampus (HPC). Several theories on the HPC hold that only certain types of recent memories should be affected by HPC damage. These theories do not accurately predict the circumstances within which memories are vulnerable to HPC damage. Here I show the HPC plays a role in the formation and storage of a wider range of memories than is posited in contemporary theories. I will demonstrate that an important factor in elciting retrograde amnesia is the number of similar learning episodes. Exposure to multiple problems in the same task context leads to retorgrade amnesia that is not observed when only one problem is learned under otherwise identical parameters. When multiple discriminations are learned, the output of the HPC blocks recall from and future use of the extra-HPC memory system. / x, 78 leaves : ill. ; 29 cm.
|
14 |
The role of cues and the hippocampus in home base behaviourHines, Dustin J, University of Lethbridge. Faculty of Arts and Science January 2004 (has links)
The thesis examines the ability of animals to construct a home base. The home
base is a point in space where animals rear, groom, and circle and is a primary element in
organized spatial behaviour (Eilam and Golani 1989). Once animals establish a home
base, they make outward trips and stops, and after a series of trips and stops they return
again to the home base. The home base behaviour of animals acts as a platform for asking
questions about the cognitive organization of an environment. The thesis describes five
main findings. Control and hippocampectomized animals use (1) proximal and (2) distal
cues to form a home base and organize their behaviour. (3) Control and olfactory
bulbectomized animals form home bases in the dark where as hippocampectomized
animals are impaired suggesting self-movement but not olfactory cues play a role in
home base behaviour. A final set of experiments demonstrated that control and
hippocampectomized animals learn the position of (4) proximal and (5) distal cues so that
in the cue's absence, animals still form a home base at that position. The demonstration
that a central feature of exploratory behaviour, establishing a home base, is preserved in
hippocampectomized rats in relation to proximal, distal, and conditioned visual cues -
reveals that exploratory behaviour remains organized after hippocampal lesions. The
inability of hippocampectomized rats to form a virtual home base in the absence of visual
cues is discussed in relation to the idea that the hippocampus contributes to inertial
behaviour that may be dependent upon self-movement cues. / xv, 232 leaves : ill. ; 29 cm.
|
15 |
Of Mice, Men and Memories: The Role of the Rodent Hippocampus in Object RecognitionUnknown Date (has links)
Establishing appropriate animal models for the study of human memory is
paramount to the development of memory disorder treatments. Damage to the
hippocampus, a medial temporal lobe brain structure, has been implicated in the memory
loss associated with Alzheimer’s disease and other dementias. In humans, the role of the
hippocampus is largely defined; yet, its role in rodents is much less clear due to
conflicting findings. To investigate these discrepancies, an extensive review of the rodent
literature was conducted, with a focus on studies that used the Novel Object Recognition
(NOR) paradigm for testing. The total amount of time the objects were explored during
training and the delay imposed between training and testing seemed to determine
hippocampal recruitment in rodents. Male C57BL/6J mice were implanted with bilateral
dorsal CA1 guide cannulae to allow for the inactivation of the hippocampus at discrete
time points in the task. The results suggest that the rodent hippocampus is crucial to the
encoding, consolidation and retrieval of object memory. Next, it was determined that there is a delay-dependent involvement of the hippocampus in object memory, implying
that other structures may be supporting the memory prior to the recruitment of
hippocampus. In addition, when the context memory and object memory could be further
dissociated, by altering the task design, the results imply a necessary role for the
hippocampus in the object memory, irrespective of context. Also, making the task more
perceptually demanding, by requiring the mice to perform a two-dimensional to three-dimensional
association between stimuli, engaged the hippocampus. Then, in the
traditional NOR task, long and short training exploration times were imposed to
determine brain region activity for weak and strong object memory. The inactivation and
immunohistochemistry findings imply weak object memory is perirhinal cortex
dependent, while strong object memory is hippocampal-dependent. Taken together, the
findings suggest that mice, like humans, process object memory on a continuum from
weak to strong, recruiting the hippocampus conditionally for strong familiarity.
Confirming this functional similarity between the rodent and human object memory
systems could be beneficial for future studies investigating memory disorders. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
|
16 |
The role of the hippocampus and post-learning hippocampal activity in long-term consolidation of context memoryGulbrandsen-MacDonald, Tine L, University of Lethbridge. Faculty of Arts and Science January 2011 (has links)
Sutherland, Sparks and Lehmann (2010) proposed a new theory of memory consolidation, termed Distributed Reinstatement Theory (DRT), where the hippocampus (HPC) is needed for initial encoding but some types of memories are established in non-HPC systems through post-learning HPC activity. An evaluation of the current methodology of temporary inactivation was conducted experimentally. By permanently implanting two bilateral guide cannulae in the HPC and infusing ropivacaine cellular activity could be reduced by 97%. Rats were trained in a context-fear paradigm. Six learning episodes distributed across three days made the memory resistant to HPC inactivation while three episodes did not. Blocking post-learning HPC activity following three of six training sessions failed to reduce the rat’s memory of the fearful context. These results fail to support DRT and indicate that one or more memory systems outside the HPC can acquire context memory without HPC post-event activity. / x, 85 leaves : ill. ; 29 cm
|
17 |
Structural alterations in the hippocampus and spatial behavior by stress in male and female rats : protections, and recovery in water-based and dry-land tasksFaraji, Jamshid, University of Lethbridge. Faculty of Arts and Science January 2008 (has links)
Stress-related cognitive changes are still a matter of debate. In some
particular neuropathological conditions such as focal ischemia, cognitive
functions have been shown to be significantly impaired. These conditions,
however, may be improved by some factors such as steroid hormones. The
purpose of the current thesis was to assess the structural and functional effects
of corticosterone-related experiences on the hippocampus before and after
endothelin-1 (ET-1)-induced stroke. We found corticosterone-related experiences
enhance the hippocampal recovery, and improve its function in both wet and dryland
tasks after ET-1-induced focal stroke. Structural and functional effects of
such experiences prior to the focal ischemia in the hippocampus, however,
showed that stress, not corticosterone is a strong inhibitor for hippocampal
recovery. / xii, 252 leaves : ill. ; 29 cm. --
|
Page generated in 0.0444 seconds