• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 46
  • 46
  • 15
  • 14
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

INVESTIGATING ROLES OF THE METABOLIC ENZYME FUMARASE AND THE METABOLITE FUMARATE IN DNA DAMAGE RESPONSE

Faeze Saatchi (5930213) 10 June 2019 (has links)
<p>In eukaryotic cells, DNA is packaged into a structure named chromatin which contains DNA and proteins. Nucleosomes are building blocks of chromatin and contain DNA wrapped around a histone octamer. Chromatin modifications (histone post-translational modifications and histone variants) play central roles in various cellular processes including gene expression and DNA damage response. Chromatin modifying enzymes use metabolites as co-substrates and co-factors, and changes in metabolic pathways and metabolite availability affects chromatin modifications and chromatin-associated functions. Moreover, recent studies have uncovered direct roles of metabolic enzymes in chromatin-associated functions. Fumarase, a TCA cycle enzyme that catalyzes the reversible conversion of fumarate to malate in mitochondria (a hydration reaction), is an example of an enzyme with dual functions in metabolism and genome integrity. Cytoplasmic fraction of yeast fumarase, Fum1p, localizes to the nucleus and promotes growth upon DNA damage. Fum1p promotes homologous recombination by enhancing DNA end resection. Human fumarase is involved in DNA repair by non-homologous end joining. Here, we provide evidence that yeast Fum1p and the histone variant Htz1p are also involved in DNA replication stress response and DNA repair by non-homologous end joining (NHEJ). Using mutants lacking the histone variant <i>HTZ1</i>, we show that high cellular levels of fumarate, by deletion of <i>FUM1</i> or addition of exogenous fumarate, suppressed the sensitivity to DNA replication stress by modulation of activity of Jhd2p. This suppression required sensors and mediators of the intra-S phase checkpoint, but not factors involved in the processing of replication intermediates. These results imply that high cellular levels of fumarate can confer resistance to DNA replication stress by bypassing or complementing the defects caused by loss of <i>HTZ1</i> and replication fork processing factors. We also show that upon induction of DSBs, exogenous fumarate conferred resistance to mutants with defects in NHEJ, early steps of homologous recombination (DNA end resection pathway) or late steps of homologous recombination (strand invasion and exchange). Taken together, these results link the metabolic enzyme fumarase and the metabolite fumarate to DNA damage response and show that modulation of DNA damage response by regulating activity of chromatin modifying enzymes is a plausible pathway linking metabolism and nutrient availability to chromatin-associated functions like genome integrity.<br><a></a></p>
12

Epigenetic transitions in cardiovascular development and cell reprogramming

Aguilar Sanchez, Cristina January 2017 (has links)
Epigenetic modifications are alterations in the cell nucleus that affect gene expression and can occur in chromatin at the level of DNA methylation or histone modifications. Such ‘epigenetic marks’ can be heritable through cell division but leave the DNA sequence unchanged. Post-­translational modifications can be found on the histone proteins associated with DNA; the majority of histone modifications are found on the lysine-­rich N-‐terminal amino acid “tails”. Histone acetylation and methylation influence the chromatin structure by loosening or tightening the packaging of DNA, respectively, in association with other chromatin modifiers. Condensed chromatin is linked to transcriptional silencing and genetic imprinting and also occurs at chromosomal centromeres, where it is linked to kinetochore binding. Heart development is well studied, but the epigenetic processes involved are not yet completely understood. While active chromatin mechanisms such as histone acetylation and chromatin remodelling have been described in the heart, the role of gene repressive epigenetic mechanisms has been poorly investigated. Cardiomyocytes are post-­mitotic cells that do not divide to regenerate a damaged heart. The regeneration of cardiomyocytes after myocardial infarction is an important topic of interest in cardiovascular science. There are various approaches to heart repair after infarction, including activating cardiomyocytes so they become mitotic once again, or growing cardiomyocytes in vitro to attach to a lesion site. An important factor in these approaches is understanding the epigenetic mechanisms controlling cell division. In this thesis, we aim to advance the current knowledge of the epigenetic repressive mechanisms involved in cardiomyocyte formation and heart development to explain their lack of regenerative capacities. We studied the epigenetic changes that occur during cardiac development leading to a non-­‐regenerative state to pinpoint the moment at which these changes arise. We found that the epigenetic process is independent of whether cardiac lineage differentiation occurs during embryogenesis or during differentiation in vitro. We discovered that cardiac heterochromatin displays a singular epigenetic signature during development as compared to brain, another post-­mitotic tissue, or liver, an actively regenerative tissue. We observed an epigenetic change in the repressive histone modification histone H3 lysine 9 trimethylation that was specific to heart development. This change involved a nuclear reorganisation of heterochromatin and a reduction of the levels of this mark in E13.5 and E14.5 embryos, as compared to E10.5 embryos. This was consistent with our observations of the histone lysine methyltransferase SUV39H1, the levels of which were lower after stage E10.5 of development. However, contradictorily, in differentiated cardiomyocytes in vitro, SUV39H1 was increased but showed low levels of H3K9me3, compared to ES cells, which had low levels of SUV39H1 and high levels of H3K9me3. We detected extremely low levels of the H3K9me3 in adult heart tissue. We observed that in adult hearts, the myocardium had maintained these major changes in H3K9me3, while this effect was not observed in the epicardium. Genomic studies were carried out to determine changes at a genomic level between the two key epigenetic stages in heart development we identified at E10.5 and E13.5. Methylated DNA immunoprecipitation sequencing and chromatin immunoprecipitation sequencing for H3K9me3 analyses were carried out to find overall changes in methylation patterns. No global changes in DNA methylation were detected between these developmental stages. These results imply that the differences observed in H3K9me3 are due to remodelling of the heterochromatin during heart development and cardiomyocyte formation, rather than quantitative changes.
13

MULTIGENERATIONAL GENOMIC AND EPIGENETIC EFFECTS OF MANUFACTURED SILVER NANOMATERIALS IN <em>CAENORHABDITIS ELEGANS</em>

Wamucho, Anye 01 January 2019 (has links)
There has been an increase in the incorporation of silver nanomaterials into consumer products due to their antimicrobial properties. Therefore there is potential for silver nanoparticles (Ag-NPs) to leach out into the environment during different life-cycle stages of these nanomaterial-containing products. Concern about the toxicity of Ag-NPs has led to investigations into their toxic effects on a variety of organisms mainly using acute and sub-chronic, single-generation exposures. The focus of this project was to understand the effects of long-term continuous multigenerational exposure to AgNO3 and Ag-NPs in both pristine and environmentally transformed forms, on the model organism, Caenorhabditis elegans, a soil nematode. A previous multigenerational C. elegans study, showed increased sensitivity in terms of reproductive toxicity, in response to AgNO3 and Ag-NPs, but not sulfidized Ag-NPs (sAg-NPs), with increasing generations of exposure. The reproductive toxicity persisted in subsequently unexposed generations even after rescue from the exposure. We hypothesized that genomic mutations and/or epigenetic changes were possible mechanisms by which the reproductive toxicity was inherited. We investigated the potential for induction of germline mutations in C. elegans after exposures for ten generations to AgNO3, Ag-NPs, and sAg-NPs using whole genome DNA sequencing. Epigenetic changes at histone methylation markers, (H3K4me2 and H3K9me3), and DNA methylation at adenosine (N6-methyl-2’-deoxyadenosine) were investigated after multigenerational exposure as well as after rescue from the exposure using enzyme-linked immunosorbent assays (ELISA) and liquid chromatography with tandem mass spectrometry (LC-MS/MS), respectively. Expression levels of the genes of methyltransferases and demethylases, associated with the histone methylation markers and DNA methylation, were also examined. Our results for germline mutations reveal no significant differences between the nematodes exposed to AgNO3 or pristine Ag-NPs when compared to controls. The significant increase in the number of transversion was observed only for sAg-NPs. However, a trend toward an increase in the total number of mutations was observed in all Ag treatments with some of those mutations having a predicted moderate or high impact. This potentially contributed towards reproductive as well as growth toxicity shown previously after ten generations of exposure in every treatment.. These results did not entirely support the multigenerational reproductive toxicity observed previously. Epigenetic responses at histone methylation markers revealed opposite patterns between pristine and transformed Ag-NPs with Ag-NPs causing a significant increase while exposure to sAg-NPs resulted in significant decrease in methylation at H3K4me2 mark. The increase in H3K4me2 levels was also inherited by subsequent unexposed generations rescued from Ag-NP exposure. Only sAg-NPs caused a significant decrease in methylation at H3K9me3 mark. Changes in mRNA levels for histone methyltransferases and demethylase corresponded with the histone methylation levels affected by Ag-NPs and sAg-NPs. For DNA methylation, a significant increase was observed only for AgNO3, which was not inherited after the rescue. In conclusion, while germline mutations with a high or moderate impact may affect reproduction, our results do not support this as a mechanism for the heritable increase in C. elegans sensitivity to reproductive toxicity from AgNO3 and pristine Ag-NPs. The epigenetic changes, however, do show partial correlation with the observed reproductive toxicity. The reproductive multigenerational effects of AgNO3 can be attributed to changes in DNA methylation whereas that of Ag-NPs can be attributed to changes in histone methylation. Further studies, focused on the investigation of changes in histone and DNA methylation levels at specific loci using chromatin immunoprecipitation sequencing (ChIP-Seq) and methylated DNA immunoprecipitation sequencing (MeDIP-Seq), respectively, are warranted for a better understanding of the impact of such changes.
14

Structural and Functional Dissection of the MLL1 Histone Methyltransferase Complex

Avdic, Vanja 17 May 2011 (has links)
The mixed lineage leukemia (MLL) proteins regulate an array of developmental and differentiation processes. Similar to other members of the SET1 family, association of MLL1-4 with Ash2L, RbBP5 and WDR5, collectively termed the MLL core complex, is required for MLL mediated histone H3 Lys-4 di/tri-methylation. Each member of the core complex has a unique role in modulating the activity of MLL1. WDR5 is key in nucleating the formation of the core complex by acting as a structural scaffold, whereas Ash2L and RbBP5 are responsible for stimulating MLL methyltransferase activity. Currently, the structural and biochemical mechanisms utilized by the core complex to regulate MLL1 activity are unknown. Through structural and biochemical dissection of the core complex we have assigned specific functions to core complex subunits and have identified the minimal structural requirements for methyltransferase activity. Furthermore, through structure based drug design, we have identified a peptidomimetic inhibitor of MLL1 methyltransferase activity.
15

Structural and Functional Dissection of the MLL1 Histone Methyltransferase Complex

Avdic, Vanja 17 May 2011 (has links)
The mixed lineage leukemia (MLL) proteins regulate an array of developmental and differentiation processes. Similar to other members of the SET1 family, association of MLL1-4 with Ash2L, RbBP5 and WDR5, collectively termed the MLL core complex, is required for MLL mediated histone H3 Lys-4 di/tri-methylation. Each member of the core complex has a unique role in modulating the activity of MLL1. WDR5 is key in nucleating the formation of the core complex by acting as a structural scaffold, whereas Ash2L and RbBP5 are responsible for stimulating MLL methyltransferase activity. Currently, the structural and biochemical mechanisms utilized by the core complex to regulate MLL1 activity are unknown. Through structural and biochemical dissection of the core complex we have assigned specific functions to core complex subunits and have identified the minimal structural requirements for methyltransferase activity. Furthermore, through structure based drug design, we have identified a peptidomimetic inhibitor of MLL1 methyltransferase activity.
16

The Role of Chromatin Structure and Histone Modifications in Gene Silencing at the Ribosomal DNA Locus in Saccharomyces cerevisiae

Williamson, Kelly M. 2011 May 1900 (has links)
One of the fundamental questions in science is how chromatin transitions from actively transcribed euchromatin to silent heterochromatin, and what factors affect this transition. One area of my research has focused on understanding the differences in the chromatin structure of active and silent regions in the ribosomal DNA locus (rDNA), a heterochromatin region in S. cerevisiae. Secondly, I have focused on understanding a histone methyltransferase Set1, which is involved in both euchromatin and heterochromatin regions. To distinguish actively transcribed open regions of chromatin from silent and closed regions of chromatin, we have expressed a DNA methyltransferase M.CviPI in vivo to utilize its accessibility to GpC sites. We have used this technique to study changes in nucleosome positioning within the NTS2 region of the rDNA in two cases: as a result of a silencing defect caused by the loss of Sir2, a histone deacetylase involved in silencing at the rDNA, and as an indicator of active transcription by RNA Pol I. Using this technique, we observed differences between open and closed chromatin structure by changes in nucleosome positioning within NTS2. Additionally, we have observed the presence of bound factors within the 35S rRNA gene promoter that are unique to actively transcribed genes. The second area of my research focused on the protein methyltransferase Set1 that mono-, di-, and trimethylates lysine 4 of histone H3 (H3K4) utilizing the methyl group from S-adenosyl methionine (SAM). Set1 is part of a multi protein complex called COMPASS (Complex associated with Set1), and is associated with both actively transcribed and silent regions. Thirty mutants of Set1 were made within the SET domain to learn more about the catalytic mechanism of Set1. The crystal structures of human SET domain proteins, as well as sequence alignments and a random mutagenesis of yeast Set1, were used to identify conserved amino acids in the SET domain of Set1. Mutants were analyzed for their effect on histone methylation in vivo, silencing of RNA Pol II transcription within the rDNA, suppression of ipl1-2, and COMPASS complex formation. Our results show that trimethylated H3K4 is required for silencing of RNA Pol II transcription at the rDNA. Overall, we have shown the importance of tyrosine residues in SET domain proteins. To summarize, my research has strived to understand chromatin structure and the factors that affect the transition between euchromatin and heterochromatin.
17

Epigenomic Actions of Environmental Arsenicals

Severson, Paul Leamon January 2013 (has links)
Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. Aberrant DNA methylation in general occurred more often within H3K27me3 stem cell domains. We found a striking association between enrichment of H3K9me3 stem cell domains and toxicant-induced agglomerative DNA methylation. Global gene expression profiling of the arsenite-transformed prostate epithelial cells showed that gene expression changes and DNA methylation changes were negatively correlated, but less than 10% of the hypermethylated genes were down-regulated. These studies confirm that a majority of the DNA hypermethylation events occur at transcriptionally repressed, H3K27me3 marked genes. In contrast to aberrant DNA methylation targeting H3K27me3 pre-marked silent genes, we found that actively expressed ZNF genes marked with H3K9me3 on their 3' ends, are preferred targets of DNA methylation linked gene silencing. H3K9me3 mediated gene silencing of ZNF genes was widespread, occurring at individual ZNF genes on multiple chromosomes and across ZNF gene family clusters. At ZNF gene promoters, H3K9me3 and DNA hypermethylation replaced H3K4me3, resulting in a widespread down-regulation of ZNF gene expression which accounted for 8% of all the down-regulated genes in the arsenical-transformed cells. In summary, these studies associate arsenical exposure with agglomerative DNA methylation of gene family clusters and widespread silencing of ZNF genes by DNA hypermethylation-linked H3K9me3 spreading, further implicating epigenetic dysfunction as a driver of arsenical-induced carcinogenesis.
18

Dynamic regulation of histone lysine methylation via the ubiquitin-proteasome system.

Lim, Hui Jun January 2013 (has links)
Lysine methylation is an important post-translational modification found on histones that is added and removed by histone lysine methyltransferases and demethylases, respectively. Lysine methylation occurs in a specific and well-regulated manner, and plays key roles in regulating important biological processes such as transcription, DNA damage and cell cycle. Regulation of the protein abundance of these methylation enzymes particularly by the ubiquitin-proteasome system has emerged as a key mechanism by which the histone methylation status of the cell can be regulated, allowing cells to respond rapidly to specific developmental and environmental cues. In my thesis, I focus on two histone lysine demethylases, KDM4A and PHF8, both of which appear to be regulated by E3 ligases; this regulation impacts their function in the cell. Chapter 2 shows that KDM4A is targeted for proteasomal degradation by the SCFFBXO22, and mis-regulation of KDM4A results in changes in global histone 3 lysine 9 and 36 (H3K9 and H3K36) methylation levels and impacts the transcription of a KDM4A target gene, ASCL2. Chapter 3 shows how PHF8 is targeted for proteasomal degradation by the APCCDC20 via a novel, previously unreported LxPKxLF motif on PHF8. I also found that similar to other APCCDC20 substrates like Cyclin B, PHF8 is an important G2-M regulator, loss of which results in cell cycle defects such as prolonged G2 and defective M phases. To further interrogate PHF8 biology, Chapter 4 describes the generation of a PHF8 conditional knockout mouse. PHF8 biology is interesting and relevant to human disease, as mutations are found in X-linked intellectual disability and autism. Complete loss of PHF8 by full body knockout in the mouse appears to be embryonically lethal, underscoring its key role in early development. This mouse model would allow us to extensively study the biochemistry and biology of PHF8 in the context of development and especially in brain function, where it is anticipated to play key roles. Overall, my dissertation work provides mechanistic and biological insights into how histone demethylases are dynamically regulated by the ubiquitin-proteasome system, providing an extra dimension to our understanding of how chromatin marks can be regulated.
19

H3K4 methyltransferases Mll1 and Mll2 have distinct roles and cooperate in neural differentiation and reprogramming

Neumann, Katrin 28 October 2014 (has links) (PDF)
Methylation of lysine residues in histone tails is an intensively studied epigenetic signal that regulates transcription throughout development. Methylation of histone 3 lysine 4 (H3K4) is usually associated with promoters of actively transcribed genes whereas H3K27 or H3K9 methylation silences genes. Yeast possess only one H3K4 methyltransferase, Set1. In contrast, there are six enzymes capable of catalyzing this modification in mammals implying a certain specialization or division of labor. The present study examined the functions of the mouse H3K4 methyltransferase paralogs, Mixed Lineage Leukemia 1 (Mll1) and Mll2, during neural differentiation and reprogramming of neural stem (NS) cells to induced pluripotency. We could show that Mll2 is required for differentiation of embryonic stem (ES) cells to neural progenitors and identified Nuclear transport factor 2-like export factor 2 (Nxt2) as essential target gene. Mll2 trimethylated the Nxt2 promoter in ES cells in order to allow for transcriptional upregulation during subsequent neural differentiation. Additionally, Mll2 prevented apoptosis of differentiating cells by regulating B cell leukemia/lymphoma 2 (Bcl2) levels. Mll1 could replace Mll2 after the first steps of cell commitment towards epiblast stem (EpiS) cells. While Mll2 activity was only required briefly when ES cells started to differentiate, the influence of Mll1 seemed to increase with developmental progression. It stabilized the NS cell state by regulating expression of the neural transcription factor Orthodenticle homolog 2 (Otx2). Thereby, Mll1 impeded early steps of reprogramming to induced pluripotency and its inactivation increased the efficiency. Besides their specificity for certain target genes, both enzymes also differed in their activity. The major function of Mll1 was to prevent silencing by H3K27 methylation and possibly recruitment of transcription factors. In contrast, Mll2 conducted H3K4 trimethylation of its target genes. Importantly, once established in NS cells, the expression of Nxt2 became independent of promoter H3K4 methylation. Thus, Mll2 and its target gene Nxt2 represent an example for H3K4 methylation functioning as priming mechanism rather than for fine-tuning or maintenance of transcription levels.
20

Structural and Functional Dissection of the MLL1 Histone Methyltransferase Complex

Avdic, Vanja 17 May 2011 (has links)
The mixed lineage leukemia (MLL) proteins regulate an array of developmental and differentiation processes. Similar to other members of the SET1 family, association of MLL1-4 with Ash2L, RbBP5 and WDR5, collectively termed the MLL core complex, is required for MLL mediated histone H3 Lys-4 di/tri-methylation. Each member of the core complex has a unique role in modulating the activity of MLL1. WDR5 is key in nucleating the formation of the core complex by acting as a structural scaffold, whereas Ash2L and RbBP5 are responsible for stimulating MLL methyltransferase activity. Currently, the structural and biochemical mechanisms utilized by the core complex to regulate MLL1 activity are unknown. Through structural and biochemical dissection of the core complex we have assigned specific functions to core complex subunits and have identified the minimal structural requirements for methyltransferase activity. Furthermore, through structure based drug design, we have identified a peptidomimetic inhibitor of MLL1 methyltransferase activity.

Page generated in 0.1273 seconds