• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 12
  • 11
  • 8
  • 7
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 152
  • 152
  • 43
  • 32
  • 31
  • 22
  • 21
  • 18
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Functional characterization of the regulation of transcription factor MEF2C by histone acetyltransferase p300 and histone deacetylase 4 /

Chan, Jonathan Ka Lok. January 2004 (has links)
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2004. / Includes bibliographical references (leaves 135-159). Also available in electronic version. Access restricted to campus users.
12

The Design and Synthesis of Novel Barbiturates of Pharmaceutical Interest

Neumann, Donna 21 May 2004 (has links)
Barbituric acids have been historically classified as compounds that act on the central nervous system, and as such provide therapeutic uses as anxiolytics, sedatives, hypnotics, and anticonvulsants. Recent investigations of barbituric acid derivatives have provided scientists with information that barbituric acids may have applications in antibacterial, anti-chlamydial, anti-viral, as well as anti-cancer treatments. Additionally, recent literature accounts have indicated that barbituric acid derivatives may also act as immune modulators. The recent explorations of barbiturates and their potential anti-cancer and immune modulating properties are the subject of this work. Novel synthetic approaches to the development of new barbituric acid derivatives were explored thoroughly, and the mechanisms of these novel syntheses were detailed by experiment and spectroscopic characterizations. In many cases the reaction procedures were designed for large scale, efficient syntheses, that are directly applicable to pharmaceutical production of these potentially valuable therapeutic compounds. Several new products unique to barbituric acid reactions were characterized spectroscopically. Barbituric acid derivatives were the subject of biological evaluation, and the results are reported in this work. Overall, unique synthetic approaches to the production of novel barbituric acid derivatives were accomplished to create several new classes of barbiturates with potential applications in cancer treatment.
13

Transcriptional regulation of the SRC12 and SRC1A promoters in human cancer cell lines

Dehm, Scott Michael 25 August 2003
The human SRC gene encodes pp60c-Src (or c-Src), a 60 kDa, non-receptor tyrosine kinase frequently activated in colon and other tumors. Many studies have demonstrated c-Src activation can be accounted for by overexpression of c-Src protein, and that this overexpression is important for the fully transformed phenotype of cancer cells. The general goal of this thesis, therefore, was to determine the mechanism of this overexpression in human cancer cells. Examination of c-Src expression and activity in human colon cancer cell lines showed that c-Src activation was due to transcriptional activation of the SRC gene. SRC transcription is directed by the ubiquitous, Sp1 regulated SRC1A promoter, and the HNF-1alpha regulated, tissue restricted SRC1alpha promoter. To study the mechanism of SRC transcriptional activation in human cancer cell lines, a dual SRC promoter reporter construct was generated with both these promoters in their natural, physiologically linked context. Very low activity of the SRC1alpha promoter, relative to SRC1A, was consistently observed from this construct, leading to the conclusion that an enhancer element elevates SRC1alpha promoter activity. Interestingly, the HNF binding site in the SRC1alpha promoter enhanced SRC1A promoter activity in the dual promoter construct, but only in a colon cancer cell line with activated SRC. These results therefore suggest SRC transcriptional activation results from enhancer action and/or SRC promoter cross-talk in subsets of human cancer cells. <p> This study has also determined that histone deacetylase inhibitors (HDIs), compounds with documented anti-neoplastic properties, repress transcription from both SRC promoters in various cancer cell lines. To identify the mechanism of this repression, various deletion and mutant SRC promoter constructs were assayed, but HDI response elements were not identified. However, it was discovered that both promoters shared a common requirement for functional TAF1/TAF(II)250, a component of the general transcription factor TFIID. Compromised TAF1 function impaired SRC transcription, but also blocked SRC repression by HDIs. Experiments with SRC:WAF1 promoter chimeras showed the SRC promoters' TAF1 requirement could be conferred on the heterologous, TAF1-independent promoter for the WAF1 gene, which encodes the cell cycle inhibitor p21. These chimeras were also repressed by HDIs, despite WAF1 normally being strongly induced by these agents. These results therefore provide a potential functional link between promoter architecture, TAF1 dependence, and HDI mediated transcriptional repression.
14

Transcriptional regulation of the SRC12 and SRC1A promoters in human cancer cell lines

Dehm, Scott Michael 25 August 2003 (has links)
The human SRC gene encodes pp60c-Src (or c-Src), a 60 kDa, non-receptor tyrosine kinase frequently activated in colon and other tumors. Many studies have demonstrated c-Src activation can be accounted for by overexpression of c-Src protein, and that this overexpression is important for the fully transformed phenotype of cancer cells. The general goal of this thesis, therefore, was to determine the mechanism of this overexpression in human cancer cells. Examination of c-Src expression and activity in human colon cancer cell lines showed that c-Src activation was due to transcriptional activation of the SRC gene. SRC transcription is directed by the ubiquitous, Sp1 regulated SRC1A promoter, and the HNF-1alpha regulated, tissue restricted SRC1alpha promoter. To study the mechanism of SRC transcriptional activation in human cancer cell lines, a dual SRC promoter reporter construct was generated with both these promoters in their natural, physiologically linked context. Very low activity of the SRC1alpha promoter, relative to SRC1A, was consistently observed from this construct, leading to the conclusion that an enhancer element elevates SRC1alpha promoter activity. Interestingly, the HNF binding site in the SRC1alpha promoter enhanced SRC1A promoter activity in the dual promoter construct, but only in a colon cancer cell line with activated SRC. These results therefore suggest SRC transcriptional activation results from enhancer action and/or SRC promoter cross-talk in subsets of human cancer cells. <p> This study has also determined that histone deacetylase inhibitors (HDIs), compounds with documented anti-neoplastic properties, repress transcription from both SRC promoters in various cancer cell lines. To identify the mechanism of this repression, various deletion and mutant SRC promoter constructs were assayed, but HDI response elements were not identified. However, it was discovered that both promoters shared a common requirement for functional TAF1/TAF(II)250, a component of the general transcription factor TFIID. Compromised TAF1 function impaired SRC transcription, but also blocked SRC repression by HDIs. Experiments with SRC:WAF1 promoter chimeras showed the SRC promoters' TAF1 requirement could be conferred on the heterologous, TAF1-independent promoter for the WAF1 gene, which encodes the cell cycle inhibitor p21. These chimeras were also repressed by HDIs, despite WAF1 normally being strongly induced by these agents. These results therefore provide a potential functional link between promoter architecture, TAF1 dependence, and HDI mediated transcriptional repression.
15

A chemical genetic approach for the identification of selective inhibitors of NAD(+)-dependent deacetylases /

Hirao, Maki. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 90-97).
16

Therapeutic potential of demethylation agents and histone deaceytlase inhibitors in NK-cell lymphoma and leukemia

Kam, Kevin., 甘季燐. January 2007 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
17

Effect of demethylation and histone deacetylase inhibitors on differential expression of genes in human ovarian cancer and choriocarcinoma cell lines /

Li, Siu-ming, January 2007 (has links)
Thesis (M. Med. Sc.)--University of Hong Kong, 2007.
18

Activation of lytic cycle of Epstein-barr virus of histone deacetylase inhibitors

Hui, Kwai-fung. January 2008 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 105-114) Also available in print.
19

In vivo characterization of the role of histone deacetylase 3 in metabolic and transcriptional regulation

Knutson, Sarah Kathleen. January 2008 (has links)
Thesis (Ph. D. in Biochemistry)--Vanderbilt University, Aug. 2008. / Title from title screen. Includes bibliographical references.
20

Structural and functional characterization of histone acetyltransferase-1

Mersfelder, Erica Lee Paul, January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 104-115).

Page generated in 0.0425 seconds