• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 12
  • 11
  • 8
  • 7
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 153
  • 153
  • 43
  • 32
  • 31
  • 22
  • 21
  • 18
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A novel mechanism of chemoprevention by sulforaphane : inhibition of histone deacetylase

Myzak, Melinda C. 29 April 2005 (has links)
Targeting the epigenome, including the use of histone deacetylase (HDAC) inhibitors, is a novel strategy for cancer chemoprevention. Sulforaphane (SFN), a compound found at high levels in broccoli and broccoli sprouts, is a potent inducer of Phase 2 detoxification enzymes and inhibits tumorigenesis in animal models. SFN also has a marked effect on cell cycle checkpoint controls and cell survival/apoptosis in various cancer cells, through mechanisms that are poorly understood. Based on the structure of known histone deacetylase inhibitors, it was hypothesized that SFN may possess HDAC inhibitory properties. Initial studies confirmed that, indeed, at physiologically-relevant concentrations, SFN inhibited HDAC activity in human colorectal cancer cells, with a concomitant increase in acetylated histones H3 and H4, induction of p21 expression, and increased acetylated histone H4 associated with the P21 promoter. A metabolite of SFN, SFN-Cysteine, was found to be the active HDAC inhibitor. Furthermore, in BPH-1, LnCaP, and PC-3 human prostate epithelial cells, SFN inhibited HDAC activity and increased acetylation of histones. SFN also induced p21 expression, with an increase in acetylated histone H4 associated with the P21 promoter in BPH-1 cells. The downstream effects of HDAC inhibition by SFN included induction of pro-apoptotic proteins and repression of anti-apoptotic proteins, and an increase in multi-caspase activity. Dietary SFN suppressed the growth of human prostate cancer PC-3 xenografts and inhibited HDAC activity in the xenografts, peripheral blood mononuclear cells (PBMC), and prostates. In time-course studies, a single oral dose of SFN induced histone acetylation at 6 and 24 h in mouse colonic mucosa, and long-term dietary SFN treatment increased histone acetylation in the ileum, colon, PBMC, and prostates. Moreover, dietary SFN suppressed intestinal tumorigenesis significantly in Apc[superscrip min] mice, with an increase in acetylated histones detected in the normal-looking ileum and polyps and polyps from the colon. Overall, the data presented in this thesis support a novel mechanism for chemoprevention by SFN in vivo, through inhibition of histone deacetylase. The findings also imply that SFN will offer significant protection against at least two of the major cancer killers in the US, namely colon and prostate cancer. / Graduation date: 2005
32

Determining the Activity of Three HDAC Variants in the Presence of Compounds Containing 1,2,3-and 1,2,4-Triazoles as Zinc Binding Groups

Glazener, Rachel Louise 01 August 2010 (has links)
Histone Deacetylase (HDAC) plays a vital role in cellular processes, for example gene expression, cell growth, and apoptosis. Finding drug candidates to inhibit the over activity of HDACs in cancer is a growing area of interest. Inhibitors, thus far, have three important motifs to be studied: the zinc binding group, a hydrophobic linker, and a cap group. By altering these groups on the inhibitor, not only can activity be increased but also selectivity within the classes of HDACs. We present the design of two novel sets of molecules that contain either a 1,2,3-triazole or 1,2,4-triazole. The 1,2,3-triazoles were synthesized using “click chemistry” with a novel pyridyl triazine catalyst. The 1,2,4-triazoles were synthesized utilizing substitution chemistry. This set of molecules was designed after suberoylanilide hydroxamic acid (SAHA) but replaced the hydroxamate with the triazole as the zinc binding group. The activity of these inhibitors against HDAC 1, HDAC 6, and SIRT 1 were tested using the Biomol Fluor de Lys in vitro kits. Though none of the synthesized compounds were strong activators or inhibitors of any of the classes of HDACs, trends were observed that could lead to the design of more potent inhibitors.
33

Molecularly targeted therapy for ovarian cancer

Yang, Ya-Ting, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 115-136).
34

Overcoming frataxin gene silencing in Friedreich’s ataxia with small molecules: studies on cellular and animal models

Rai, Myriam 05 January 2010 (has links)
Friedreich’s ataxia (FRDA) is an inherited recessive disorder characterized by progressive neurological disability and heart disease. It is caused by a pathological intronic hyperexpansion of a GAA repeat in the FXN gene, encoding the essential mitochondrial protein frataxin. At the homozygous state, the GAA expansion induces a heterochromatin state with decreased histone acetylation and increased methylation, resulting in a partial deficiency of frataxin expression. This was established in cells from FRDA patients. We showed that the same chromatin changes exist in a GAA based mouse model, KIKI, generated in our laboratory. Furthermore, treatment of KIKI mice with a novel Histone Deacetylase Inhibitor (HDACi), 106, a pimelic diphenylamide that increases frataxin levels in FRDA cell culture, restored frataxin levels in the nervous system and heart of KIKI mice and induced histone hyperacetylation near the GAA repeat. As shown by microarrays, most of the differentially expressed genes in KIKI were corrected towards wild type. In an effort to improve the pharmacological profile of compound 106, we synthesized more compounds based on its structure and specificity. We characterized two of these compounds in FRDA patients’ peripheral blood lymphocytes and in the KIKI mouse model. We observed a sustained frataxin upregulation in both systems, and, by following the time course of the events, we concluded that the effects of these compounds last longer than the time of direct exposure to HDACi. Our results support the pre-clinical development of a therapeutic approach based on pimelic diphenylamide HDACis for FRDA. Laboratory tools to follow disease progression and assess drug efficacy are needed in a slowly progressive neurodegenerative disease such as FRDA. We used microarrays to characterize the gene expression profile in peripheral lymphocytes from FRDA patients, carriers and controls. We identified gene expression changes in heterozygous, clinically unaffected GAA expansion carriers, suggesting that they present a biochemical phenotype, consistent with data from animal models of frataxin deficiency. We identified a subset of genes changing in patients as a result of pathological frataxin deficiency establishing robust gene expression changes in peripheral lymphocytes. These changes can be used as a biomarker to monitor disease progression and potentially assess drug efficacy. To this end, we used he same methodology to characterize the gene expression profiles in peripheral lymphocytes after treatment with pimelic diphenylamide HDACi. This treatment had relevant effects on gene expression on peripheral patients’ blood lymphocytes. It increased frataxin levels in a dose-dependent manner, and partially rescued the gene expression phenotype associated with frataxin deficiency in the tested cell model, thus providing the first application of a biomarker gene set in FRDA.
35

The Role of Activating Transcription Factor 3 (ATF3) in Chemotherapeutic Induced Cytotoxicity

St. Germain, Carly 17 May 2011 (has links)
Understanding the specific mechanisms regulating chemotherapeutic drug anti-cancer activities will uncover novel strategies to enhance the efficacy of these drugs in clinical settings. Activating Transcription Factor 3 (ATF3) is a stress inducible gene whose expression has been associated with survival outcomes in cancer models. This study characterizes the chemotherapeutic drugs, cisplatin and Histone Deacetylase Inhibitor (HDACi), M344 as novel inducers of ATF3 expression. Cisplatin is a DNA damaging agent widely used in various tumour types including lung, head and neck, and ovarian carcinomas. The HDAC inhibitor, SAHA, has recently been approved as a single agent in the treatment of subcutaneous T-cell lymphoma and HDACis themselves show potential for synergistic anti-cancer effects when used in combination with established chemotherapeutic drugs, including cisplatin. This study evaluates the mechanisms by which cisplatin and HDACi induce ATF3, as well as the role ATF3 plays as a mediator of cisplatin-induced cytotoxicity and the enhanced cytotoxicity between HDACi and cisplatin in combination. In this study, we demonstrate that cytotoxic doses of cisplatin and carboplatin consistently induced ATF3 expression in a panel of human tumour derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response (ISR) independent mechanism, all previously implicated in stress mediated ATF3 induction. Analysis of MAPKinase pathway involvement in ATF3 induction by cisplatin revealed a MAPKinase dependent mechanism. Cisplatin treatment, in combination with specific inhibitors to each MAPKinase pathway (JNK, ERK and p38) resulted in decreased ATF3 induction at the protein level. MAPKinase pathway inhibition led to decreased ATF3 mRNA expression and a reduction in the cytotoxic effects of cisplatin as measured by MTT cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific shRNAs also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3 -/- MEFs were shown to be less sensitive to cisplatin induced cytotoxicity as compared with ATF3+/+ MEFs. Taken together, we identified cisplatin as a MAPKinase pathway dependent inducer of ATF3 whose expression regulates in part cisplatin’s cytotoxic effects. Furthermore, we demonstrated that the HDAC inhibitor M344 was also an inducer of ATF3 expression at the protein and mRNA level in the same human derived cancer cell lines. Combination treatment with M344 and cisplatin lead to increased induction of ATF3 compared with cisplatin alone. Utilizing the MTT cell viability assay, M344 treatment was also shown to enhance the cytotoxic effects of cisplatin in these cancer cell lines. Unlike cisplatin, the mechanism of ATF3 induction by M344 was found to be independent of MAPKinase pathways. Utilizing ATF4 heterozygote (+/-) and knock out (-/-) mouse embryonic fibroblast (MEF) M334 induction of ATF3 was shown to depend on the presence of ATF4, a known regulator of ATF3 expression as part of the ISR pathway. HDACi treatment did not affect the level of histone acetylation associated with the ATF3 promoter as determined through Chromatin immunoprecipitation (ChIP) analysis, suggesting that ATF3 induction was not a direct effect of HDACi mediated histone acetylation. We also demonstrated that ATF3 regulates the enhanced cytotoxicity of M344 in combination with cisplatin as evidenced by attenuation of cytotoxicity in shRNAs targeting ATF3 expressing cells. This study identifies the pro-apoptotic factor, ATF3 as a novel target of M344, as well as a mediator of the co-operative effects of cisplatin and M344 induced tumour cell cytotoxicity.
36

Histone deacetylase inhibitor regulation of gene expression

Hirsch, Calley Lynn 28 June 2007
Histone deacetylase inhibitors (HDIs) are a group of chemo-preventive and chemo-therapeutic agents that have generated significant attention in clinical trials, given their ability to selectively induce cell cycle arrest, differentiation and/or apoptosis of tumor cells. Presently, these agents are proposed to function by altering gene expression levels, primarily by promoting histone hyperacetylation and gene transcription. However, in this thesis, HDIs are reported to control the expression of genes from the c-Src kinase family and p21WAF1 by means other than transcriptional activation. <p>Overexpression and activation of c-Src, a 60kDa non-receptor tyrosine kinase, has been implicated in the development, growth, progression, and metastasis of several human cancers, especially those of the colon. Butyrate and the more specific histone deacetylase inhibitor trichostatin A (TSA) were both found to effectively inhibit the expression of c-Src mRNA and protein in a number of tumor cell lines, including those of the colon, liver and breast. Expression of the SRC oncogene is alternatively regulated by the SRC1A and SRC1 promoters. HDIs were shown to repress c-Src expression by inhibiting transcription of both of these promoters, independent of any new protein synthesis. Furthermore, butyrate and TSA similarly regulated the expression of the c-Src family kinase (SFK) members Yes, Fyn, Lyn and Lck in human colon cancer cell lines. In addition, TATA binding protein (TBP) associated factor 1 (TAF1) was shown to be necessary for basal transcription of the SRC1A, YES and LYN promoters, but was not required for HDI mediated repression. <p>Induction of the potent cyclin dependent kinase inhibitor p21WAF1 has been identified to be a key feature of HDI mediated cell cycle arrest. The level of p21WAF1 expression has been extensively reported to be directly upregulated by HDIs in a p53 independent manner that requires Sp family binding sites in the p21WAF1 proximal promoter to induce transcription. However, HDIs were shown to be capable of inducing p21WAF1 gene expression, dependent on new protein synthesis, by increasing mRNA stability. To date, p21WAF1 mRNA stability has been extensively studied and a number of cis-acting elements in the 3 untranslated region (UTR) of the p21WAF1 mRNA have been implicated in the regulation of mRNA stability, such as AU rich elements (AREs) and a 42 nucleotide HuD/Elav binding element. Similarly, in this work, two novel cis-acting elements were identified in the 3 UTR of p21WAF1 and were shown to facilitate basal and HDI induced post-transcriptional regulation of p21WAF1 mRNA stability in HepG2 cells. Collectively, these studies highlight the intricacy of HDI mediated effects and challenge the preconceptions regarding the molecular mechanism of these anti-tumor agents.
37

The Role of Activating Transcription Factor 3 (ATF3) in Chemotherapeutic Induced Cytotoxicity

St. Germain, Carly 17 May 2011 (has links)
Understanding the specific mechanisms regulating chemotherapeutic drug anti-cancer activities will uncover novel strategies to enhance the efficacy of these drugs in clinical settings. Activating Transcription Factor 3 (ATF3) is a stress inducible gene whose expression has been associated with survival outcomes in cancer models. This study characterizes the chemotherapeutic drugs, cisplatin and Histone Deacetylase Inhibitor (HDACi), M344 as novel inducers of ATF3 expression. Cisplatin is a DNA damaging agent widely used in various tumour types including lung, head and neck, and ovarian carcinomas. The HDAC inhibitor, SAHA, has recently been approved as a single agent in the treatment of subcutaneous T-cell lymphoma and HDACis themselves show potential for synergistic anti-cancer effects when used in combination with established chemotherapeutic drugs, including cisplatin. This study evaluates the mechanisms by which cisplatin and HDACi induce ATF3, as well as the role ATF3 plays as a mediator of cisplatin-induced cytotoxicity and the enhanced cytotoxicity between HDACi and cisplatin in combination. In this study, we demonstrate that cytotoxic doses of cisplatin and carboplatin consistently induced ATF3 expression in a panel of human tumour derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response (ISR) independent mechanism, all previously implicated in stress mediated ATF3 induction. Analysis of MAPKinase pathway involvement in ATF3 induction by cisplatin revealed a MAPKinase dependent mechanism. Cisplatin treatment, in combination with specific inhibitors to each MAPKinase pathway (JNK, ERK and p38) resulted in decreased ATF3 induction at the protein level. MAPKinase pathway inhibition led to decreased ATF3 mRNA expression and a reduction in the cytotoxic effects of cisplatin as measured by MTT cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific shRNAs also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3 -/- MEFs were shown to be less sensitive to cisplatin induced cytotoxicity as compared with ATF3+/+ MEFs. Taken together, we identified cisplatin as a MAPKinase pathway dependent inducer of ATF3 whose expression regulates in part cisplatin’s cytotoxic effects. Furthermore, we demonstrated that the HDAC inhibitor M344 was also an inducer of ATF3 expression at the protein and mRNA level in the same human derived cancer cell lines. Combination treatment with M344 and cisplatin lead to increased induction of ATF3 compared with cisplatin alone. Utilizing the MTT cell viability assay, M344 treatment was also shown to enhance the cytotoxic effects of cisplatin in these cancer cell lines. Unlike cisplatin, the mechanism of ATF3 induction by M344 was found to be independent of MAPKinase pathways. Utilizing ATF4 heterozygote (+/-) and knock out (-/-) mouse embryonic fibroblast (MEF) M334 induction of ATF3 was shown to depend on the presence of ATF4, a known regulator of ATF3 expression as part of the ISR pathway. HDACi treatment did not affect the level of histone acetylation associated with the ATF3 promoter as determined through Chromatin immunoprecipitation (ChIP) analysis, suggesting that ATF3 induction was not a direct effect of HDACi mediated histone acetylation. We also demonstrated that ATF3 regulates the enhanced cytotoxicity of M344 in combination with cisplatin as evidenced by attenuation of cytotoxicity in shRNAs targeting ATF3 expressing cells. This study identifies the pro-apoptotic factor, ATF3 as a novel target of M344, as well as a mediator of the co-operative effects of cisplatin and M344 induced tumour cell cytotoxicity.
38

Histone deacetylase inhibitor regulation of gene expression

Hirsch, Calley Lynn 28 June 2007 (has links)
Histone deacetylase inhibitors (HDIs) are a group of chemo-preventive and chemo-therapeutic agents that have generated significant attention in clinical trials, given their ability to selectively induce cell cycle arrest, differentiation and/or apoptosis of tumor cells. Presently, these agents are proposed to function by altering gene expression levels, primarily by promoting histone hyperacetylation and gene transcription. However, in this thesis, HDIs are reported to control the expression of genes from the c-Src kinase family and p21WAF1 by means other than transcriptional activation. <p>Overexpression and activation of c-Src, a 60kDa non-receptor tyrosine kinase, has been implicated in the development, growth, progression, and metastasis of several human cancers, especially those of the colon. Butyrate and the more specific histone deacetylase inhibitor trichostatin A (TSA) were both found to effectively inhibit the expression of c-Src mRNA and protein in a number of tumor cell lines, including those of the colon, liver and breast. Expression of the SRC oncogene is alternatively regulated by the SRC1A and SRC1 promoters. HDIs were shown to repress c-Src expression by inhibiting transcription of both of these promoters, independent of any new protein synthesis. Furthermore, butyrate and TSA similarly regulated the expression of the c-Src family kinase (SFK) members Yes, Fyn, Lyn and Lck in human colon cancer cell lines. In addition, TATA binding protein (TBP) associated factor 1 (TAF1) was shown to be necessary for basal transcription of the SRC1A, YES and LYN promoters, but was not required for HDI mediated repression. <p>Induction of the potent cyclin dependent kinase inhibitor p21WAF1 has been identified to be a key feature of HDI mediated cell cycle arrest. The level of p21WAF1 expression has been extensively reported to be directly upregulated by HDIs in a p53 independent manner that requires Sp family binding sites in the p21WAF1 proximal promoter to induce transcription. However, HDIs were shown to be capable of inducing p21WAF1 gene expression, dependent on new protein synthesis, by increasing mRNA stability. To date, p21WAF1 mRNA stability has been extensively studied and a number of cis-acting elements in the 3 untranslated region (UTR) of the p21WAF1 mRNA have been implicated in the regulation of mRNA stability, such as AU rich elements (AREs) and a 42 nucleotide HuD/Elav binding element. Similarly, in this work, two novel cis-acting elements were identified in the 3 UTR of p21WAF1 and were shown to facilitate basal and HDI induced post-transcriptional regulation of p21WAF1 mRNA stability in HepG2 cells. Collectively, these studies highlight the intricacy of HDI mediated effects and challenge the preconceptions regarding the molecular mechanism of these anti-tumor agents.
39

Determining the Activity of Three HDAC Variants in the Presence of Compounds Containing 1,2,3-and 1,2,4-Triazoles as Zinc Binding Groups

Glazener, Rachel Louise 01 August 2010 (has links)
Histone Deacetylase (HDAC) plays a vital role in cellular processes, for example gene expression, cell growth, and apoptosis. Finding drug candidates to inhibit the over activity of HDACs in cancer is a growing area of interest. Inhibitors, thus far, have three important motifs to be studied: the zinc binding group, a hydrophobic linker, and a cap group. By altering these groups on the inhibitor, not only can activity be increased but also selectivity within the classes of HDACs. We present the design of two novel sets of molecules that contain either a 1,2,3-triazole or 1,2,4-triazole. The 1,2,3-triazoles were synthesized using “click chemistry” with a novel pyridyl triazine catalyst. The 1,2,4-triazoles were synthesized utilizing substitution chemistry. This set of molecules was designed after suberoylanilide hydroxamic acid (SAHA) but replaced the hydroxamate with the triazole as the zinc binding group. The activity of these inhibitors against HDAC 1, HDAC 6, and SIRT 1 were tested using the Biomol Fluor de Lys in vitro kits. Though none of the synthesized compounds were strong activators or inhibitors of any of the classes of HDACs, trends were observed that could lead to the design of more potent inhibitors.
40

Improving histone deacetylase inhibition therapy through isoform selectivity and targeted delivery

Sodji, Quaovi Hemeka 08 June 2015 (has links)
Histone deacetylase (HDAC) inhibition has recently emerged as a novel therapy for cancer treatment. However, currently approved histone deacetylase inhibitors (HDACi) are pan-inhibitors thus inhibiting all 11 zinc dependent HDAC isoforms including those not involved in tumorigenesis. These inhibitors are also associated with various side effects including a potentially fatal cardiotoxicity. To address these issues, isoform selective HDACi were designed and synthesized. The use of 3-hydroxy-pyridin-2-thione (3HPT) as zinc chelation group resulted in small molecules devoid of HDAC1 inhibition but active against HDAC6 and/or 8. Selected 3HPT containing HDACi displayed anticancer activity against various cancer cell lines including DU145, LNCaP and Jurkat. Surprisingly, the lead-compounds were very potent against Jurkat Jγ cells which are resistant to SAHA-induced apoptosis. HDACi were also targeted to cancer cells using folic or pteroic acids as targeting groups. Incorporation of the folic acid into the HDACi pharmacophoric model resulted in inhibitors selective for HDAC6, whereas pteroic-based HDACi inhibited both HDAC1 and 6. Only the pteroic-based inhibitors displayed anticancer activities against folate receptor overexpressing tumors such KB and HeLa. Furthermore, cell-based studies established the inhibition of HDAC1 as the basis for the anticancer activities of the pteroic-based HDACi.

Page generated in 0.0663 seconds