• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hit song analysis on the Swedish music market : An exploration of hit song classification

Hurtig, David, Lager, Petter January 2023 (has links)
Assessing hit song potential is a challenge in the music industry. The question of what song to promote, which song to release first and whether or not it will succeed has always been an issue for stakeholders in the music business. The ability to statistically evaluate hit song potential is a growing field with several studies exploring the topic. In this study we explore the field of hit song science and explore the Swedish hit song profile. We compile hit songs in Sweden between the years 2020 to 2023 and evaluate the distinction between hits and non-hits by using several machine learning methods. The question of assessing lyrics is explored by encoding topic content by using chat-GPT on song lyrics. An accuracy of 70.1% concerning the ability to correctly predict whether a song has been a hit was achieved with the RandomForest algorithm and the feasibility of statistically quantifying hit song potential and its future direction as a research field is discussed. / Att bedöma hitlåtspotential är en utmaning i musikindustrin. Frågan om vilken låt att marknadsföra, vilka låtar som ska släppas först och huruvida de kommer att vara framgångsrika ekonomiskt har alltid varit en utmaning. Förmågan att statistiskt evaluera en låts marknadsmässiga potential är ett växande fält med ett flertal studier. I denna studie utforskar vi fältet “hit song science” och utforskar den svenska hitlåtsprofilen. Vi sammanställer hitlåtar i Sverige mellan åren 2020 till 2023 och utvärderar distinktionen mellan hits och icke-hits med hjälp av maskininlärningsalgoritmer. Vi utforskar förmåga att utröna sångtextsämnen genom att använda chat-GPT på låttexter. En träffsäkerhet på 70.1% uppnåddes via RandomForest-algoritmen och förmågan att statistiskt förutse en låts hitpotential och den framtida forskningsriktningen diskuteras.

Page generated in 0.0789 seconds