Spelling suggestions: "subject:"holdout"" "subject:"foldout""
1 |
A Lawn in the SkyHutchinson, Simon 03 October 2013 (has links)
"A Lawn in the Sky" is a musical drama in two acts on a libretto by Katherine Hollander. The piece is based on the true story of Lieutenant Onoda Hiroo, a Japanese "straggler" who refused to believe that Japan had surrendered in World War II and continued to wage guerilla warfare in the jungles of the Philippines until 1974. The librettist constructed this fictionalized account drawing from information in newspaper articles and Onoda's memoir, No Surrender: My Thirty-Year War.
While both Ms. Hollander and I referred to these historical sources, the story is a work of fiction, including a total cast of nine characters, several purely fictional. These roles are supported by an ensemble of Western instruments: flute, clarinet, saxophone, oboe, bassoon, percussion, piano, and contrabass; Japanese instruments: nohkan, shamisen, and taiko; and fixed media electronics. This mixed ensemble parallels the characters' divergent views of reality and offers opportunities for multidimensional commentary on both the libretto and the story.
Included with this document is a supplemental zip file which contains the audio samples and sample players for the electronic portion of the score.
|
2 |
Um experimento para o modelo do holdout do vendedorCastro, Joaquim Dias de 18 September 2008 (has links)
Submitted by Andrea Virginio Machado (andrea.machado@fgv.br) on 2008-09-18T16:34:59Z
No. of bitstreams: 1
013202008_Dissertacao_Joaquim_Castro_2.pdf: 244558 bytes, checksum: 448af9a5717e95270f6accf12f3b05dd (MD5) / Approved for entry into archive by Antoanne Pontes(antoanne.pontes@fgv.br) on 2008-09-18T16:36:06Z (GMT) No. of bitstreams: 1
013202008_Dissertacao_Joaquim_Castro_2.pdf: 244558 bytes, checksum: 448af9a5717e95270f6accf12f3b05dd (MD5) / Made available in DSpace on 2008-09-18T16:36:06Z (GMT). No. of bitstreams: 1
013202008_Dissertacao_Joaquim_Castro_2.pdf: 244558 bytes, checksum: 448af9a5717e95270f6accf12f3b05dd (MD5) / Essa dissertação apresenta uma análise experimental do modelo de holdout apresentado em Menezes e Pitchford (2004), no qual o aumento na complementeri- dade entre os bens dos vendedores implica maior probabilidade de ocorrência de holdout, ou atraso do vendedor, na negociação entre os vendedores e um com- prador. O comportamento observado no laboratório corrobora essa previsão do modelo teórico. Observou-se, ainda, que os jogadores com maiores ganhos no ex- perimento atrasaram menos a entrada na negociação.
|
3 |
Spatial crash prediction models: an evaluation of the impacts of enriched information on model performance and the suitability of different spatial modeling approaches / Modelos espaciais de previsão de acidentes: uma avaliação do desempenho dos modelos a partir da incorporação de informações aprimoradas e a adequação de diferentes abordagens de modelagem espacialGomes, Monique Martins 04 December 2018 (has links)
The unavailability of crash-related data has been a long lasting challenge in Brazil. In addition to the poor implementation and follow-up of road safety strategies, this drawback has hampered the development of studies that could contribute to national goals toward road safety. In contrast, developed countries have built their effective strategies on solid data basis, therefore, investing a considerable time and money in obtaining and creating pertinent information. In this research, we aim to assess the potential impacts of supplementary data on spatial model performance and the suitability of different spatial modeling approaches on crash prediction. The intention is to notify the authorities in Brazil and other developing countries, about the importance of having appropriate data. In this thesis, we set two specific objectives: (I) to investigate the spatial model prediction accuracy at unsampled subzones; (II) to evaluate the performance of spatial data analysis approaches on crash prediction. Firstly, we carry out a benchmarking based on Geographically Weighted Regression (GWR) models developed for Flanders, Belgium, and São Paulo, Brazil. Models are developed for two modes of transport: active (i.e. pedestrians and cyclists) and motorized transport (i.e. motorized vehicles occupants). Subsequently, we apply the repeated holdout method on the Flemish models, introducing two GWR validation approaches, named GWR holdout1 and GWR holdout2. While the former is based on the local coefficient estimates derived from the neighboring subzones and measures of the explanatory variables for the validation subzones, the latter uses the casualty estimates of the neighboring subzones directly to estimate outcomes for the missing subzones. Lastly, we compare the performance of GWR models with Mean Imputation (MEI), K-Nearest Neighbor (KNN) and Kriging with External Drift (KED). Findings showed that by adding the supplementary data, reductions of 20% and 25% for motorized transport, and 25% and 35% for active transport resulted in corrected Akaike Information Criterion (AICc) and Mean Squared Prediction Errors (MSPE), respectively. From a practical perspective, the results could help us identify hotspots and prioritize data collection strategies besides identify, implement and enforce appropriate countermeasures. Concerning the spatial approaches, GWR holdout2 out performed all other techniques and proved that GWR is an appropriate spatial technique for both prediction and impact analyses. Especially in countries where data availability has been an issue, this validation framework allows casualties or crash frequencies to be estimated while effectively capturing the spatial variation of the data. / A indisponibilidade de variáveis explicativas de acidentes de trânsito tem sido um desafio duradouro no Brasil. Além da má implementação e acompanhamento de estratégias de segurança viária, esse inconveniente tem dificultado o desenvolvimento de estudos que poderiam contribuir com as metas nacionais de segurança no trânsito. Em contraste, países desenvolvidos tem construído suas estratégias efetivas com base em dados sólidos, e portanto, investindo tempo e dinheiro consideráveis na obtenção e criação de informações pertinentes. O objetivo dessa pesquisa é avaliar os possíveis impactos de dados suplementares sobre o desempenho de modelos espaciais, e a adequação de diferentes abordagens de modelagem espacial na previsão de acidentes. A intenção é notificar as autoridades brasileiras e de outros países em desenvolvimento sobre a importância de dados adequados. Nesta tese, foram definidos dois objetivos específicos: (I) investigar a acurácia do modelo espacial em subzonas sem amostragem; (II) avaliar o desempenho de técnicas de análise espacial de dados na previsão de acidentes. Primeiramente, foi realizado um estudo comparativo, baseado em modelos desenvolvidos para Flandres (Bélgica) e São Paulo (Brasil), através do método de Regressão Geograficamente Ponderada (RGP). Os modelos foram desenvolvidos para dois modos de transporte: ativos (pedestres e ciclistas) e motorizados (ocupantes de veículos motorizados). Subsequentemente, foi aplicado o método de holdout repetido nos modelos Flamengos, introduzindo duas abordagens de validação para GWR, denominados RGP holdout1 e RGP holdout2. Enquanto o primeiro é baseado nas estimativas de coeficientes locais derivados das subzonas vizinhas e medidas das variáveis explicativas para as subzonas de validação, o último usa as estimativas de acidentes das subzonas vizinhas, diretamente, para estimar os resultados para as subzonas ausentes. Por fim, foi comparado o desempenho de modelos RGP e outras abordagens, tais como Imputação pela Média de dados faltantes (IM), K-vizinhos mais próximos (KNN) e Krigagem com Deriva Externa (KDE). Os resultados mostraram que, adicionando os dados suplementares, reduções de 20% e 25% para o transporte motorizado, e 25% e 35% para o transporte ativo, foram resultantes em termos de Critério de Informação de Akaike corrigido (AICc) e Erro Quadrático Médio da Predição (EQMP), respectivamente. Do ponto de vista prático, os resultados poderiam ajudar a identificar hotspots e priorizar estratégias de coleta de dados, além de identificar, implementar e aplicar contramedidas adequadas. No que diz respeito às abordagens espaciais, RGP holdout2 teve melhor desempenho em relação a todas as outras técnicas e, provou que a RGP é uma técnica espacial apropriada para ambas as análises de previsão e impactos. Especialmente em países onde a disponibilidade de dados tem sido um problema, essa estrutura de validação permite que as acidentes sejam estimados enquanto, capturando efetivamente a variação espacial dos dados.
|
4 |
Spatial crash prediction models: an evaluation of the impacts of enriched information on model performance and the suitability of different spatial modeling approaches / Modelos espaciais de previsão de acidentes: uma avaliação do desempenho dos modelos a partir da incorporação de informações aprimoradas e a adequação de diferentes abordagens de modelagem espacialMonique Martins Gomes 04 December 2018 (has links)
The unavailability of crash-related data has been a long lasting challenge in Brazil. In addition to the poor implementation and follow-up of road safety strategies, this drawback has hampered the development of studies that could contribute to national goals toward road safety. In contrast, developed countries have built their effective strategies on solid data basis, therefore, investing a considerable time and money in obtaining and creating pertinent information. In this research, we aim to assess the potential impacts of supplementary data on spatial model performance and the suitability of different spatial modeling approaches on crash prediction. The intention is to notify the authorities in Brazil and other developing countries, about the importance of having appropriate data. In this thesis, we set two specific objectives: (I) to investigate the spatial model prediction accuracy at unsampled subzones; (II) to evaluate the performance of spatial data analysis approaches on crash prediction. Firstly, we carry out a benchmarking based on Geographically Weighted Regression (GWR) models developed for Flanders, Belgium, and São Paulo, Brazil. Models are developed for two modes of transport: active (i.e. pedestrians and cyclists) and motorized transport (i.e. motorized vehicles occupants). Subsequently, we apply the repeated holdout method on the Flemish models, introducing two GWR validation approaches, named GWR holdout1 and GWR holdout2. While the former is based on the local coefficient estimates derived from the neighboring subzones and measures of the explanatory variables for the validation subzones, the latter uses the casualty estimates of the neighboring subzones directly to estimate outcomes for the missing subzones. Lastly, we compare the performance of GWR models with Mean Imputation (MEI), K-Nearest Neighbor (KNN) and Kriging with External Drift (KED). Findings showed that by adding the supplementary data, reductions of 20% and 25% for motorized transport, and 25% and 35% for active transport resulted in corrected Akaike Information Criterion (AICc) and Mean Squared Prediction Errors (MSPE), respectively. From a practical perspective, the results could help us identify hotspots and prioritize data collection strategies besides identify, implement and enforce appropriate countermeasures. Concerning the spatial approaches, GWR holdout2 out performed all other techniques and proved that GWR is an appropriate spatial technique for both prediction and impact analyses. Especially in countries where data availability has been an issue, this validation framework allows casualties or crash frequencies to be estimated while effectively capturing the spatial variation of the data. / A indisponibilidade de variáveis explicativas de acidentes de trânsito tem sido um desafio duradouro no Brasil. Além da má implementação e acompanhamento de estratégias de segurança viária, esse inconveniente tem dificultado o desenvolvimento de estudos que poderiam contribuir com as metas nacionais de segurança no trânsito. Em contraste, países desenvolvidos tem construído suas estratégias efetivas com base em dados sólidos, e portanto, investindo tempo e dinheiro consideráveis na obtenção e criação de informações pertinentes. O objetivo dessa pesquisa é avaliar os possíveis impactos de dados suplementares sobre o desempenho de modelos espaciais, e a adequação de diferentes abordagens de modelagem espacial na previsão de acidentes. A intenção é notificar as autoridades brasileiras e de outros países em desenvolvimento sobre a importância de dados adequados. Nesta tese, foram definidos dois objetivos específicos: (I) investigar a acurácia do modelo espacial em subzonas sem amostragem; (II) avaliar o desempenho de técnicas de análise espacial de dados na previsão de acidentes. Primeiramente, foi realizado um estudo comparativo, baseado em modelos desenvolvidos para Flandres (Bélgica) e São Paulo (Brasil), através do método de Regressão Geograficamente Ponderada (RGP). Os modelos foram desenvolvidos para dois modos de transporte: ativos (pedestres e ciclistas) e motorizados (ocupantes de veículos motorizados). Subsequentemente, foi aplicado o método de holdout repetido nos modelos Flamengos, introduzindo duas abordagens de validação para GWR, denominados RGP holdout1 e RGP holdout2. Enquanto o primeiro é baseado nas estimativas de coeficientes locais derivados das subzonas vizinhas e medidas das variáveis explicativas para as subzonas de validação, o último usa as estimativas de acidentes das subzonas vizinhas, diretamente, para estimar os resultados para as subzonas ausentes. Por fim, foi comparado o desempenho de modelos RGP e outras abordagens, tais como Imputação pela Média de dados faltantes (IM), K-vizinhos mais próximos (KNN) e Krigagem com Deriva Externa (KDE). Os resultados mostraram que, adicionando os dados suplementares, reduções de 20% e 25% para o transporte motorizado, e 25% e 35% para o transporte ativo, foram resultantes em termos de Critério de Informação de Akaike corrigido (AICc) e Erro Quadrático Médio da Predição (EQMP), respectivamente. Do ponto de vista prático, os resultados poderiam ajudar a identificar hotspots e priorizar estratégias de coleta de dados, além de identificar, implementar e aplicar contramedidas adequadas. No que diz respeito às abordagens espaciais, RGP holdout2 teve melhor desempenho em relação a todas as outras técnicas e, provou que a RGP é uma técnica espacial apropriada para ambas as análises de previsão e impactos. Especialmente em países onde a disponibilidade de dados tem sido um problema, essa estrutura de validação permite que as acidentes sejam estimados enquanto, capturando efetivamente a variação espacial dos dados.
|
5 |
Sovereign Debt after Republic of Argentina v. NML Capital: Developing a Framework for Sovereign Default ArbitrationKrey, Katherine Gorter 01 January 2017 (has links)
In July 2014, Argentina entered selective default, even as the country remained financially solvent. The default stemmed not from economic woes, but rather from protracted international litigation between Argentina and a group of hedge funds who, for years, refused to negotiate with Argentina over their bond holdings in the wake of the country’s first default in 2001. These holdouts stalled negotiations and locked Argentina out of international credit markets, damaging the country’s economy and financially harming other creditors and Argentinian citizens alike. Argentina ended up in such a dilemma because of the current sovereign debt restructuring process.
No international arbitrator of sovereign debt currently exists. Instead, a country must negotiate with creditors on an ad-hoc basis, gathering support from 100% of creditors before it can restructure its debt and reenter international credit markets, an extremely inefficient system. This paper will assess the current system of sovereign default renegotiations, identifying inefficiencies in the current system, reviewing past proposals for improvements to the system, and ultimately proposing an international arbitrator for default negotiations. This text uses the development of the US Federal Municipal Bankruptcy Act of 1934 as a guide for an international bankruptcy court. Prior to the passage of the law, municipalities faced many of the same challenges faced by defaulted nations today, including powerful holdouts and a lack of structure in the negotiation system. Given the similarities between the two cases, the Federal Municipal Bankruptcy Act serves as an ideal framework for sovereign default arbitration internationally.
|
6 |
A predictive model of the states of financial health in South African businessesNaidoo, Surendra Ramoorthee 11 1900 (has links)
The prediction of a company's financial health is of critical importance to a variety of stakeholders ranging from auditors, creditors, customers, employees, financial institutions and investors through to management.
There has been considerable research in this field, ranging from the univariate dichotomous approach of Beaver (1966) to the multivariate multi-state approaches of Lau (1987) and Ward (1994). All of the South African studies namely, Strebel and Andrews (1977), Daya (1977), De La Rey (1981), Clarke et al (1991) and Court et al (1999), and even, Lukhwareni's (2005) four separate models, were dichotomous in nature providing either a "Healthy" or a "Failed" state; or a "Winner" or "Loser" as in the latter case. Notwithstanding, all of these models would be classified as first stage, initial screening models.
This study has focused on following a two stage approach to identifying (first stage) and analysing (second stage) the States of Health in a company. It has not adopted the rigid "Healthy" or "Failed" dichotomous methodology.
For the first stage, three-state models were developed classifying a company as Healthy, Intermittent or Distressed. Both three year and five year Profit after Tax (PAT) averages for Real Earnings Growth (REG) calculations were used to determine the superior definition for the Intermittent state; with the latter coming out as superior. Models were developed for the current year (Yn), one (Yn-1), two (Yn-2) and three years (Yn-3) forward using a Test sample of twenty companies and their predictive accuracy determined by using a Holdout sample of twenty-two companies and all their data points or years of information. The statistical methods employed were a Naïve model using the simple Shareholder Value Added (SVA) ratio, CHAID and MDA, with the latter providing very disappointing results - for the Yn year (five year average), the Test sample results were 100%, 95% and 95%, respectively; with the Holdout sample results being 81.3%, 83.8% and 52.5%, respectively. The Yn-1 to Yn-3 models produced very good results for the Test sample but somewhat disappointing Holdout sample results.
The best two Yn models namely, the Naïve and the CHAID models, were modified so as to enable a comparison with the notable, dichotomous De La Rey (1981) model. As such, three different approaches were adopted and in all cases, both the modified Naïve (100%, 81.3%, 100%) and the modified CHAID (100%, 85.9%, 98%) produced superior results to the De La Rey model (84.8%, 62.6%, 75.3%).
For the second stage, a Financial Risk Analysis Model (FRAM) using ratios in the categories of Growth, Performance Analysis, Investment Analysis and Financial Status were used to provide underlying information or clues, independent of the first stage model, so as to enable the stakeholder to establish a more meaningful picture of the company. This would pave the way for the appropriate strategy and course of action to be followed, to take the company to the next level; whether it be taking the company out of a Distressed State (D) or further improving on its Healthy status (H). / Business Management / D. BL.
|
7 |
A predictive model of the states of financial health in South African businessesNaidoo, Surendra Ramoorthee 11 1900 (has links)
The prediction of a company's financial health is of critical importance to a variety of stakeholders ranging from auditors, creditors, customers, employees, financial institutions and investors through to management.
There has been considerable research in this field, ranging from the univariate dichotomous approach of Beaver (1966) to the multivariate multi-state approaches of Lau (1987) and Ward (1994). All of the South African studies namely, Strebel and Andrews (1977), Daya (1977), De La Rey (1981), Clarke et al (1991) and Court et al (1999), and even, Lukhwareni's (2005) four separate models, were dichotomous in nature providing either a "Healthy" or a "Failed" state; or a "Winner" or "Loser" as in the latter case. Notwithstanding, all of these models would be classified as first stage, initial screening models.
This study has focused on following a two stage approach to identifying (first stage) and analysing (second stage) the States of Health in a company. It has not adopted the rigid "Healthy" or "Failed" dichotomous methodology.
For the first stage, three-state models were developed classifying a company as Healthy, Intermittent or Distressed. Both three year and five year Profit after Tax (PAT) averages for Real Earnings Growth (REG) calculations were used to determine the superior definition for the Intermittent state; with the latter coming out as superior. Models were developed for the current year (Yn), one (Yn-1), two (Yn-2) and three years (Yn-3) forward using a Test sample of twenty companies and their predictive accuracy determined by using a Holdout sample of twenty-two companies and all their data points or years of information. The statistical methods employed were a Naïve model using the simple Shareholder Value Added (SVA) ratio, CHAID and MDA, with the latter providing very disappointing results - for the Yn year (five year average), the Test sample results were 100%, 95% and 95%, respectively; with the Holdout sample results being 81.3%, 83.8% and 52.5%, respectively. The Yn-1 to Yn-3 models produced very good results for the Test sample but somewhat disappointing Holdout sample results.
The best two Yn models namely, the Naïve and the CHAID models, were modified so as to enable a comparison with the notable, dichotomous De La Rey (1981) model. As such, three different approaches were adopted and in all cases, both the modified Naïve (100%, 81.3%, 100%) and the modified CHAID (100%, 85.9%, 98%) produced superior results to the De La Rey model (84.8%, 62.6%, 75.3%).
For the second stage, a Financial Risk Analysis Model (FRAM) using ratios in the categories of Growth, Performance Analysis, Investment Analysis and Financial Status were used to provide underlying information or clues, independent of the first stage model, so as to enable the stakeholder to establish a more meaningful picture of the company. This would pave the way for the appropriate strategy and course of action to be followed, to take the company to the next level; whether it be taking the company out of a Distressed State (D) or further improving on its Healthy status (H). / Business Management / D. BL.
|
8 |
A Logistic Regression Analysis of Utah Colleges Exit Poll Response Rates Using SAS SoftwareStevenson, Clint W. 27 October 2006 (has links) (PDF)
In this study I examine voter response at an interview level using a dataset of 7562 voter contacts (including responses and nonresponses) in the 2004 Utah Colleges Exit Poll. In 2004, 4908 of the 7562 voters approached responded to the exit poll for an overall response rate of 65 percent. Logistic regression is used to estimate factors that contribute to a success or failure of each interview attempt. This logistic regression model uses interviewer characteristics, voter characteristics (both respondents and nonrespondents), and exogenous factors as independent variables. Voter characteristics such as race, gender, and age are strongly associated with response. An interviewer's prior retail sales experience is associated with whether a voter will decide to respond to a questionnaire or not. The only exogenous factor that is associated with voter response is whether the interview occurred in the morning or afternoon.
|
Page generated in 0.0343 seconds