• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 271
  • 79
  • 38
  • 14
  • 13
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 560
  • 403
  • 146
  • 103
  • 96
  • 77
  • 73
  • 73
  • 64
  • 64
  • 59
  • 49
  • 45
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Finding periods in the high mass x-ray binary stars of the magellanic clouds

Briand, Lorin Michel Pierre 26 April 2011 (has links)
High Mass X-Ray Binary Stars (HMXBs) are stars that contain one early-type main sequence or giant star and one of a black hole, neutron star or white dwarf. HMXBs in the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) are instructive to study because both galaxies are metal poor in compari- son to the Milky Way and they are fairly transparent to both optical and X-ray radiation. This allows a more complete study of the whole population, without the biasing effects of gas and dust that occur in our own Galaxy. The objective of this study was to find the periods of HMXBs in the LMC and SMC with known optical counterparts in the dataset acquired by the Robotic Optical Transient Search Ex- periment telescope. Two possible orbital periods were found for the objects XTE J0055-724 and RX J0101.3-7211 of 1724 days and 478 days, respectively. Continued observations are recommended to conrm the two periods.
252

Novel Bacterial Diversity in an Anchialine Blue Hole on Abaco Island, Bahamas

Gonzalez, Brett Christopher 2010 December 1900 (has links)
Anchialine blue holes found in the interior of the Bahama Islands have distinct fresh and salt water layers, with vertical mixing, and dysoxic to anoxic conditions below the halocline. Scientific cave diving exploration and microbiological investigations of Cherokee Road Extension Blue Hole on Abaco Island have provided detailed information about the water chemistry of the vertically stratified water column. Hydrologic parameters measured suggest that circulation of seawater is occurring deep within the platform. Dense microbial assemblages which occurred as mats on the cave walls below the halocline were investigated through construction of 16S rRNA clone libraries, finding representatives across several bacterial lineages including Chlorobium and OP8. In many blue holes, microbial metabolism of organic matter in the presence of seawater sulfate leads to anoxic and sulfidic conditions at or below halocline. Sunlight penetrating this sulfidic layer allows for in situ primary production to be dominated by bacterial anoxygenic phototrophs. Although water column chemistry and molecular genetic diversity of microbial mats in Cherokee Road Extension Blue Hole were investigated in this study, the full scope of the biogeochemistry of inland blue holes throughout the Bahamas Archipelago is complex and poorly understood. However, these microbial communities are clearly influenced by several factors including solar insolation, terrestrial and marine inputs of oxygen, carbon, and nutrients, water residence times, depth to the halo/chemocline, and cave passage geometry. The biogeochemistry of inland blue holes throughout the Bahamas is so distinctive which makes Abaco Island and the rest of the archipelago valuable as natural experiments, repositories of microbial diversity, and analogs for stratified and sulfidic oceans present early in Earth's history.
253

Shaped hole effects on film cooling effectiveness and a comparison of multiple effectiveness measurement techniques

Varvel, Trent Alan 17 February 2005 (has links)
This experimental study consists of two parts. For the first part, the film cooling effectiveness for a single row of seven cylindrical holes with a compound angle is measured on a flat surface using five different measurement techniques: steady-state liquid crystal thermography, transient liquid crystal thermography, pressure sensitive paint (PSP), thermocouples, and infrared thermography. A comparison of the film cooling effectiveness from each of the measurement techniques is presented. All methods show a good comparison, especially for the higher blowing ratios. The PSP technique shows the most accurate measurements and has more advantages for measuring film cooling effectiveness. Also, the effect of blowing ratio on the film cooling effectiveness is investigated for each of the measurement techniques. The second part of the study investigates the effect of hole geometries on the film cooling effectiveness using pressure sensitive paint. Nitrogen is injected as the coolant air so that the oxygen concentration levels can be obtained for the test surface. The film effectiveness is then obtained by the mass transfer analogy. Five total hole geometries are tested: fan-shaped laidback with a compound angle, fan-shaped laidback with a simple angle, a conical configuration with a compound angle, a conical configuration with a simple angle, and the reference geometry (cylindrical holes) used in part one. The effect of blowing ratio on film cooling effectiveness is presented for each hole geometry. The spanwise averaged effectiveness for each geometry is also presented to compare the geometry effect on film cooling effectiveness. The geometry of the holes has little effect on the effectiveness at low blowing ratios. The laterally expanded holes show improved effectiveness at higher blowing ratios. All experiments are performed in a low speed wind tunnel with a mainstream velocity of 34 m/s. The coolant air is injected through the coolant holes at four different coolant-to-mainstream velocity ratios: 0.3, 0.6, 1.2, and 1.8.
254

Steady-state spherical accretion using smoothed particle hydrodynamics

Baumann, Mark Chapple 06 February 2012 (has links)
Due to its adaptable nature in a broad range of problem domains, Smoothed Particle Hydrodynamics (SPH) is a popular numerical technique for computing solutions in astrophysics. This dissertation discusses the SPH technique and assesses its capabilities for reproducing steady-state spherically-symmetric accretion flow. The accretion scenario is of great interest for its applicability in a diverse array of astrophysical phenomena and, under certain assumptions, it also provides an accepted analytical solution against which the numerical method can be validated. After deriving the necessary equations from astrophysical fluid dynamics, giving a detailed review of solving the steady-state spherical accretion problem, and developing the SPH methodology, this work suggests solutions to the issues that must be overcome in order to successfully employ the SPH methodology to reproduce steady-state spherical accretion flow. Several techniques for setting initial data are addressed, resolution requirements are illustrated, inner and outer boundary conditions are discussed, and artificial dissipation parameters and methodologies are explored. / text
255

Boosted apparent horizons

Akcay, Sarp 06 March 2014 (has links)
Boosted black holes play an important role in General Relativity (GR), especially in relation to the binary black hole problem. Solving Einstein vacuum equations in the strong field regime had long been the holy grail of numerical relativity until the significant breakthroughs made in 2005 and 2006. Numerical relativity plays a crucial role in gravitational wave detection by providing numerically generated gravitational waveforms that help search for actual signatures of gravitational radiation exciting laser interferometric detectors such as LIGO, VIRGO and GEO600 here on Earth. Binary black holes orbit each other in an ever tightening adiabatic inspiral caused by energy loss due to gravitational radiation emission. As the orbits shrinks, the holes speed up and eventually move at relativistic speeds in the vicinity of each other (separated by ~ 10M or so where 2M is the Schwarzschild radius). As such, one must abandon the Newtonian notion of a point mass on a circular orbit with tangential velocity and replace it with the concept of black holes, cloaked behind spheroidal event horizons that become distorted due to strong gravity, and further appear distorted because of Lorentz effects from the high orbital velocity. Apparent horizons (AHs) are 2-dimensional boundaries that are trapped surfaces. Conceptually, one can think of them as 'quasi-local' definitions for a black hole horizon. This will be explained in more detail in chapter 2. Apparent horizons are especially important in numerical relativity as they provide a computationally efficient way of describing and locating a black hole horizon. For a stationary spacetime, apparent horizons are 2-dimensional cross-sections of the event horizon, which is itself a 3-dimensional null surface in spacetime. Because an AH is a 2-dimensional cross-section of an event horizon, its area remains invariant under distortions due to Lorentz boosts although its shape changes. This fascinating property of the AH can be attributed to the fact that it is a cross-section of a null surface, which, under the boost, still remains null and the total area does not change. Although this invariance of the area is conceptually easy to see it is less straightforward to derive this result. We present two different ways to show the area invariance. One is based on the spin-boost transformation of the null tetrad and the other a direct coordinate transformation of the boosted metric under the Lorentz boost. Despite yielding identical results the two methods differ significantly and we elaborate on this in much more detail. We furthermore show that the use of the spin-boost transformation is not well-suited for binary black hole spacetime and that the spin-boost is fundamentally different from a Lorentz boost although the transformation equations look very similar. We also provide a way to visualize the distorted horizons and look at the multi-pole moments of these surfaces under small boosts. We finish by summarizing our main results at the end and by commenting on the binding energy of the binary and how the apparent horizon is distorted due to presence of another black hole. / text
256

Parameters that affect shaped hole film cooling performance and the effect of density ratio on heat transfer coefficient augmentation

Boyd, Emily June 01 July 2014 (has links)
Film cooling is used in gas turbine engines to cool turbine components. Cooler air is bled from the compressor, routed internally through turbine vanes and blades, and exits through discrete holes, creating a film of coolant on the parts’ surfaces. Cooling the turbine components protects them from thermal damage and allows the engine to operate at higher combustion temperatures, which increases the engine efficiency. Shaped film cooling holes with diffuser exits have the advantage that they decelerate the coolant flow, enabling the coolant jets to remain attached to the surface at higher coolant flow rates. Furthermore, the expanded exits of the coolant holes provide a wider coolant distribution over the surface. The first part of this dissertation provides data for a new laidback, fan-shaped hole geometry designed at Pennsylvania State University’s Experimental and Computational Convection Laboratory. The shaped hole geometry was tested on flat plate facilities at the University of Texas at Austin and Pennsylvania State University. The objective of testing at two laboratories was to verify the adiabatic effectiveness performance of the shaped hole, with the intent of the data being a standard of comparison for future experimental and computational shaped hole studies. At first, measurements of adiabatic effectiveness did not match between the labs, and it was later found that shaped holes are extremely sensitive to machining, the material they are machined into, and coolant entrance effects. In addition, the adiabatic effectiveness was found to scale with velocity ratio for multiple density ratios and mainstream turbulence intensities. The second part of this dissertation measures heat transfer coefficient augmentation (hf/h0) at density ratios (DR) of 1.0, 1.2, and 1.5 using a uniform heat flux plate and the same shaped hole geometry. In the past, heat transfer coefficient augmentation was generally measured at DR = 1.0 under the assumption that hf/h0 was independent of density ratio. This dissertation is the first study to directly measure the wall and adiabatic wall temperature to calculate heat transfer coefficient augmentation at DR > 1.0. The results showed that the heat transfer coefficient augmentation was low while the jets were attached to the surface and increased when the jets started to separate. At DR = 1.0, hf/h0 was higher for a given blowing ratio than at DR = 1.2 and DR = 1.5. However, when velocity ratios are matched, better correspondence was found at the different density ratios. Surface contours of hf/h0 showed that the heat transfer was initially increased along the centerline of the jet, but was reduced along the centerline at distances farther downstream. The decrease along the centerline may be due to counter-rotating vortices sweeping warm air next to the heat flux plate toward the center of the jet, where they sweep upward and thicken the thermal boundary layer. This warming of the core of the coolant jet over the heated surface was confirmed with thermal field measurements. / text
257

Computational and astrophysical studies of black hole spacetimes

Bonning, Erin Wells 28 August 2008 (has links)
Not available / text
258

On gravitational wave modeling: numerical relativity data analysis, the excitation of kerr quasinormal modes, and the unsupervised machine learning of waveform morphology

London, Lionel 21 September 2015 (has links)
The expectation that light waves are the only way to gather information about the distant universe dominated scientific thought, without serious alternative, until Einstein’s 1916 proposal that gravitational waves are generated by the dynamics of massive objects. Now, after nearly a century of speculation, theoretical development, observational support, and finally, tremendous experimental preparation, there are good reasons to believe that we will soon directly detect gravitational waves. One of the most important of these good reasons is the fact that matched filtering enables us to dig gravitational wave signals out of noisy data, if we have prior information about the signal’s morphology. Thus, at the interface of Numerical Relativity simulation, and data analysis for experiment, there is a central effort to model likely gravitational wave signals. In this context, I present my contributions to the modeling of Gravitational Ringdown (Kerr Quasinormal Modes). Specifically by ap- propriately interfacing black hole perturbation theory with Numerical Relativity, I present the first robust models for Quasinormal Mode excitation. I present the first systematic de- scription of Quasinormal Mode overtones in simulated binary black hole mergers. I present the first systematic description of nonlinear Quasinormal Mode excitation in simulated bi- nary black hole mergers. Lastly, it is suggested that by analyzing the phase of black hole Quasinormal Modes, we may learn information about the black hole’s motion with respect to the line of sight. Moreover, I present ongoing work at the intersection of gravitational wave modeling and machine learning. This work shows promise for the automated and near optimal placement of Numerical Relativity simulations concurrent with the near optimal linear modeling of gravitational output.
259

The Dynamics and Evolution of Supermassive Black Holes in Merging Galaxies

Blecha, Laura Elizabeth 03 August 2012 (has links)
This thesis is a theoretical study of supermassive black holes (SMBHs) in merging galaxies. We consider the dynamics that govern inspiralling SMBH pairs and gravitational-wave (GW) recoiling SMBHs, as well as the fueling of active galactic nuclei (AGN) during galaxy mergers. In particular, we focus on the observable signatures that could distinguish dual or recoiling AGN from those in isolated galaxies, and we explore the implications of these events for the coordinated evolution of SMBHs and galaxies. In the second and third chapters, semi-analytical models for GW-recoiling SMBHs are developed. The second chapter illustrates that bound recoiling SMBHs may have long wandering timescales and that recoil events can self-regulate SMBH growth. In the third chapter, we study the evolution of recoiling SMBHs in evolving, gaseous merger remnants. We find that the presence of gas greatly influences recoiling SMBH trajectories and may partially suppress even large recoil kicks in some cases. We also show that kinematically- and spatially-offset AGN can have substantial lifetimes for a wide range in kick speeds. Finally, this chapter illustrates that GW recoil influences the observed SMBH-galaxy relations as well as central star formation in the merger remnant. In the fourth chapter we turn our attention to inspiralling SMBH pairs with kiloparsec-scale separations. We use a novel approach to model the narrow-line emission from these SMBH pairs, in order to understand their relationship to observations of double-peaked narrow-line AGN. Our results indicate that double-peaked narrow-line AGN often arise from gas kinematics rather than from dual SMBH motion, but that the latter are a generic, short-lived phase of SMBH inspiral in gaseous mergers. We identify several diagnostics that could aid in distinguishing the true AGN pairs in the double-peaked sample. Finally, the fifth chapter examines a particular galaxy that exhibits signatures of both a recoiling AGN and an AGN pair. Applying methods developed throughout this thesis, we design models for both scenarios that are well-matched to the available data. Currently, neither possibility can be excluded for this object, but our models constrain the most relevant parameters for etermining its nature and for the design of future observations. / Astronomy
260

Effect of Curvature Squared Corrections to Gravitational Action on Viscosity-to-Entropy Ratio of the Dual Gauge Theory

Petrov, Pavel January 2012 (has links)
In this thesis we study the properties of strongly-coupled large-N conformal field theories (CFT’s) using AdS/CFT correspondence. Chapter 1 serves as an introduction. In Chapter 2 we study the shear viscosity of strongly-coupled large-N conformal field theories. We find that it is affected by \(R^2\) corrections to the AdS action and present an example of 4D theory in which the the conjectured universal lower bound on viscosity-to-entropy ratio \(\eta/s > 1/4 \pi\) is violated by 1/N corrections. This fact proves that there is no universal lower bound of \(1/4 \pi\) on viscosity-to-entropy ratio and may be relevant for the studies of QCD quark-gluon plasma for which this ratio is experimentally found to be close to \(1/4 \pi\). In Chapter 3 we study the formation of the electron star in 4D AdS space. We show that in a gravity theory with charged fermions a layer of charged fermion fluid may form at a finite distance from the charged black hole. We show that these “electron stars” are candidate gravity duals for strongly interacting fermion systems at finite density and finite temperature. Entropy density for such systems scales as \(s \sim T^{2/z}\) at low temperatures as expected from IR criticality of electron stars solutions. / Physics

Page generated in 0.0367 seconds