• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 274
  • 79
  • 38
  • 14
  • 13
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 563
  • 406
  • 148
  • 104
  • 96
  • 77
  • 73
  • 73
  • 67
  • 64
  • 60
  • 49
  • 45
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

An evaluation of cold expansion methods used for improving the fatigue life of fastener holes in aerospace aluminum alloy 7075-T6

Chakherlou, Tajbakhsh Navid January 2002 (has links)
No description available.
22

Topics in black hole evaporation

Leahy, Denis Alan January 1980 (has links)
Two major aspects of particle creation by gravitational fields of black holes are studied; the neutrino emission from rotating black holes; and interactions between scalar particles emitted by a black hole. The neutrino emission is investigated under three topics. The asymmetry of the angular dependence of neutrino emission from rotating black holes is calculated first. A low frequency analytic approximation demonstrates the preferential emission of neutrinos (antineutrinos) antiparallel (parallel) to the direction of the black hole's angular momentum vector. Numerical calculations are performed which reveal the dependence of the neutrino emission on polar angle, neutrino energy, and black hole angular momentum and mass. Next we consider the production of a local matter excess by rotating black holes in a baryon symmetric universe. Black holes form at early cosmological times with their rotation axes aligned over the same scale size as the angular momentum in the universe. The evaporation of these black holes produces large scale neutrino currents, whose effectiveness in separating baryons from antibaryons during the hadron era of the early universe is estimated. The local baryon to photon ratio over a galactic size scale depends on the subsequent evolution of the resulting matter and antimatter regions, but is found to have an upper limit of 10 ⁻¹⁴. This is much less than the present observed value of about 10⁻⁹. We then study cosaological magnetic field generation by neutrinos from evaporating black holes. During the radiation era the neutrinos scatter off protons and alectrons, producing a net charge current. This current generates magnetic fields. If present in large enough numbers, rotating black holes could account for the present observed magnetic field in our galaxy. Finally we study the effects of interactions on the black hole evaporation process. Perturbation theory is used, to second order, to calculate the effects of a 2Ф⁴ self-interaction for a scalar field Ф in the 2 dimensional black hole spacetime. a mass renormalization was found to be insufficient to remove all divergences that occur in the calculations. However, the interaction appears to destroy the thermal character of the emission from a black hole evaporating in a vacuum. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
23

Firewall argument for acoustic black holes

Pontiggia, Luca Terzio 08 June 2015 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. June 8, 2015. / We investigate the rewall paradox proposed by AMPS [1] by rst explaining the Information Paradox together with Hawking's derivation of the thermal radiation emitted from a evaporating black hole [28]. We then ask if one can apply arguments similar to that of Hawking and AMPS in the regime of uid mechanics, which was rst considered by Unruh [59]. We assume that a black hole, with a geometry conformal to the Schwarzschild metric, can be formed in a uid. The sonic hole or \dumb" hole, which is characterized by an acoustic event horizon, is the locus of points at which the background uid is traveling at the local speed of sound. Since sound disturbances are coupled to the background uid and travel at the speed of sound, the acoustic event horizon a ects sound disturbances in a manner analogous to how gravitational black holes a ect light [62]. Like a gravitational black hole, which evaporates by emitting Hawking radiation, we check if an acoustic black hole will emit in a similar kind of radiation in the form of phonons. This is done by constructing a massless scalar eld describing phonon propagation and treating the acoustic black hole just like a gravitational black hole. We apply the arguments put forth by Hawking and AMPS and see if there is any validity to an \acoustic rewall" as this would require certain physical phenomena emerging from sub-atomic scales.
24

The hidden conformal symmetry and quasinormal modes of the four dimensional Kerr black hole

Jordan, Blake 27 August 2012 (has links)
This dissertation has two areas of interest with regard to the four dimensional Kerr black hole; the rst being its conformal nature in its near region and second it characteristic frequencies. With it now known that the scalar solution space of the four dimensional Kerr black hole has a two dimensional conformal symmetry in its near region, it was the rst focus of this dissertation to see if this conformal symmetry is unique to the near region scalar solution space or if it is also present in the spin-half solution space. The second focus of this dissertation was to explore techniques which can be used to calculate these quasinormal mode (characteristic) frequencies, such as the WKB(J) approximation which has been improved from third order to sixth order recently and applied to the perturbations of a Schwarzschild black hole. The additional correction terms show a signi cant increase of accuracy when comparing to numerical methods. This dissertation shall use the sixth order WKB(J) method to calculate the quasinormal mode frequencies for both the scalar and spin-half perturbations of a four dimensional Kerr black hole. An additional method used was the asymptotic iteration method, a relatively new technique being used to calculate the quasinormal mode frequencies of black holes that have been perturbed. Prior to this dissertation it had only been used on a variety of Schwarzschild black holes and their possible perturbations. For this dissertation the asymptotic iteration method has been used to calculate the quasinormal frequencies for both the scalar and spin-half perturbations of the four dimensional Kerr black hole. The quasinormal mode frequencies calculated using both the sixth order WKB(J) method and the asymptotic iteration method were compared to previously published values and each other. For the most part, they both compare favourably with the numerical values, with di erences that are near negligible. The di erences did become more apparent when the mode number (or angular momentum per unit mass increased), but less so when the angular number increased. The only factor that separates these two methods signi cantly, was that the computational time for the sixth order WKB(J) method is less than than that of the asymptotic iteration method.
25

Black hole scaling relationships new results from reverberation mapping and Hubble Space Telescope imaging /

Bentz, Misty C., January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 139-146).
26

Electromagnetic coupling by a wire penetrating a circular aperture in an infinite planar conducting screen

Lee, Robert, 1962- January 1988 (has links)
We consider the problem of electromagnetic propagation along a wire which passes through an aperture. We begin by formulating an integral equation in terms of the electric field at the aperture. The solution of the integral equation allows us to determine parameters of interest such as the equivalent admittance, the current on the wire, and the electric field. We solve the integral equation using both a zeroth order and method of moments approximation for the aperture field. From this we are able to compute the admittance and current in the frequency domain. We next calculate the current response to a transient pulse excitation. The results show that the screen provides little shielding from pulse penetration along the wire. Finally, we calculate solutions for the electric field. The results are given in several contour plots.
27

Electromagnetic coupling by a wire through a cavity-backed circular aperture in an infinite screen

Wright, Diana Beth, 1963- January 1988 (has links)
The problem of a wire penetrating a circular aperture in an infinite screen and coupling energy into a cavity behind that screen is considered. We formulate an integral equation in terms of the electric field in the aperture. This integral equation is solved using two approximate methods: a zeroth-order approximation valid at low frequencies, and the method of moments. In addition, we introduce an equivalent circuit model to aid in our physical interpretation of the problem. Numerical results for the interior current on the wire and for the equivalent circuit admittance parameters are presented in order to provide a comparison between the two approximations. Inside the cavity, we examine the components of the electric field as a function of position. Finally, the exterior magnetic field far from the aperture is studied as a function of frequency. We examine the relationship between interior resonance features associated with the presence of the cavity and observations of the exterior field.
28

Asymptotic safety and black holes

Falls, Kevin January 2013 (has links)
We study the ultraviolet properties of quantum gravity and its consequences for black hole physics using the functional renormalisation group (RG). In particular we concentrate on the asymptotic safety scenario for quantum gravity put forward by S. Weinberg. This approach relies on the existence of an ultraviolet fixed point in the renormalisation group flow. In chapter 2 we review the functional renormalisation group formalism that is used in order to search for the existence of a fixed point with the properties required for asymptotic safety. Following this introduction, in chapter 3 we use these methods to find ultraviolet fixed points in four-dimensional quantum gravity to high order in a polynomial approximation in the Ricci scalar. In the following three chapters we concentrate on the implications of the renormalisation group for black hole physics. In chapter 4 we study quantum gravitational corrections to black holes in four and higher dimensions using a renormalisation group improvement of the metric. The quantum effects are worked out in detail for asymptotically safe gravity, where the short distance physics is characterised by a weakening of gravity due to the nontrivial fixed point. Furthermore, mini-black hole production in particle collisions, such as those at the Large Hadron Collider (LHC), is analysed within low-scale quantum gravity models. In chapter 5 we investigate the thermodynamical properties of the RG improved metrics in detail and study their evaporation process. In chapter 6 we study renormalisation group improved black hole thermodynamics in a metric free approach. Conditions are formulated under which the thermodynamic properties of four dimensional Kerr-Newman type black holes persist under the RG evolution of couplings. We show that the RG scale must be set by the horizon area of the black hole which acts as a diffeomorphism invariant cut-off for the underlying Wilsonian action.
29

Quantum black holes at the LHC : production and decay mechanisms of non-thermal microscopic black holes in particle collisions

Gausmann, Nina January 2014 (has links)
The scale of quantum gravity could be as low as a few TeV in the existence of extra spatial dimensions or if the Planck scale runs fast due to a large number of particles in a hidden sector. One of the most striking features of low-scale quantum gravity models would be the creation of quantum black holes, i.e. non-thermal black holes with masses around a few TeV, in high energy collisions. This thesis deals with the production and decay mechanisms of quantum black holes at current colliders, such as the Large Hadron Collider (LHC). Firstly, a review of models with low-scale gravity is given. We will present an overview of production and decay mechanism of classical and semi-classical black holes, including the Hoop conjecture criterion, closed trapped surfaces and thermal decay via Hawking radiation. We will then introduce a phenomenological approach of black holes, very differently from the (semi-)classical counterparts, which covers a substantially model independent and specifically established field theory, describing the production of quantum black holes. This is done by matching the amplitude of the quantum black hole processes to the extrapolated semi-classical cross section. All possible decay channels and their probabilities are found for quantum black holes with a continuous and discrete mass spectrum, respectively, by considering different symmetry conservation restrictions for a quantum gravitational theory. In conjunction with these branching ratios, we developed a Monte Carlo integration algorithm to determine the cross sections of specific final states. We extended the algorithm to investigate the enhancement of supersymmetric particle production via quantum black hole processes. Studying such objects proves very important, since it provides new possible insights and restrictions on the quantum black hole model and likewise on the low-scale quantum gravity scenarios.
30

Constraining the early universe with primordial black holes

Young, Samuel Mark January 2016 (has links)
Inflation is the leading candidate to explain the initial conditions for the Universe we see today. It consists of an epoch of accelerated expansion, and regularly solves many problems with the Big Bang theory. Non-Gaussianity of the primordial curvature perturbation can potentially be used to discriminate between competing models and provide an understanding of the mechanism of inflation. Whilst inflation is believed to have lasted at least 50 - 60 e-folds, constraints from sources such as the cosmic microwave background (CMB) or large-scale structure of the Universe (LSS) only span the largest 6 - 10 e-folds inside today's Hubble horizon, limiting our ability to constrain the early universe. Strong constraints on the non-Gaussianity on smaller scales. Primordial black holes (PBHs) represent a unique probe to study the small-scale early Universe, placing an upper limit on the primordial power spectrum spanning around 40 e-folds smaller than those visible in the CMB. PBHs are also a viable dark matter candidate. In this thesis, the effect of non-Gaussianity upon the abundance of PBHs, and the implications of such an effect are considered. It is shown that even smaller non-Gaussianity parameters can have a large effect on the constraints that can be placed on the primordial curvature perturbation power spectrum - which can become stronger or weaker by an order of magnitude. The effects of super-horizon curvature perturbation modes at the time of PBH formation are considered, and it is shown that these have little effect on the formation of a PBH, but can have an indirect effect on the abundance of PBHs due to modal coupling to horizon-scale modes in the presence of non-Gaussianity. By taking into account the effect of modal coupling to CMB-scale modes, many models can be ruled out as a mechanism to produce enough PBHs to constitute dark matter.

Page generated in 0.0408 seconds