Spelling suggestions: "subject:"follow fiber assay"" "subject:"hollow fiber assay""
1 |
Development of a modified hollow fibre assay for studying agents targeting the tumour neovasculatureShnyder, Steven, Jubb, E., Hasan, J., Cooper, Patricia A., Bibby, Michael C., Jayson, G.C., Pilarinou, E. 13 July 2009 (has links)
No / Background: Previous studies have shown extensive vascularisation surrounding subcutaneously implanted fibres when the duration of the US National Cancer Institute (NCI) hollow fibre assay was prolonged. Materials and Methods: The feasibility of adapting the NCI assay for evaluating agents targeting the tumour vasculature was investigated in vitro and in vivo. Finally, in the optimised assay, changes in neovasculature formation around the fibres following treatment with the anti-vascular agent paclitaxel were quantified by immunohistochemistry. Results: Correlations between cell number seeded, time in culture and vascular endothelial growth factor (VEGF) secretion were seen. In vivo studies showed that transplanting single rather than 3 fibres at a site reduced inflammation, reducing the length of the fibre transplanted, as did without any significant loss in cell growth over 21 days. A statistically significant reduction in neovascularisation surrounding the fibres was seen accompanying paclitaxel treatment. Conclusion: Modifications made here to the NCI hollow fibre assay demonstrate its potential for analysing anti-tumour vasculature agents.
|
2 |
The hollow fiber assay for drug responsiveness in the Ewing's sarcoma family of tumorsBibby, Michael C., Bridges, E.M., Burchill, S.A. 27 May 2009 (has links)
No / Objective: To investigate the use of the National Cancer Institute's hollow fiber assay (HFA) to evaluate and prioritize novel treatment strategies for clinical trials in the Ewing's sarcoma family of tumors (ESFT).
Study design: The growth and morphology of ESFT cell lines in hollow fibers (HFs) was characterized in vitro and in vivo. Reliability and reproducibility were evaluated using doxorubicin.
Results: The numbers of viable cells in all 6 ESFT cell lines increased with time in vitro (0 to 96 hours). The SKES-1 and A673 cell lines grew exponentially after implantation of HFs in nude mice at subcutaneous and intraperitoneal sites. ESFT cells formed highly organized distinctive morphology within the HFs in vitro and in vivo. The number of viable ESFT cells within the HFs decreased in a time-dependent (24 to 96 hours) and dose-dependent (1 to 10 mg/kg) manner after treatment with doxorubicin in vivo.
Conclusions: The HFA is a versatile short-term in vivo model that may be exploited to predict efficacy of potential anticancer agents in ESFT cells. Tumor markers and pharmacodynamic endpoints may be quantified in the pure population of ESFT cells from within the HFs.
|
3 |
Preclinical Anticancer Activity of an Electron-Deficient Organoruthenium(II) ComplexSoldevila-Barreda, Joan J., Azmanova, Maria, Pitto-Barry, Anaïs, Cooper, Patricia A., Shnyder, Steven, Barry, Nicolas P.E. 04 September 2020 (has links)
Yes / Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of action that overcome Pt-resistance mechanisms. Electron-deficient organoruthenium complexes are an understudied class of compounds that exhibit unusual reactivity in solution and might offer novel anticancer mechanisms of action. Here, we evaluate the in vitro and in vivo anticancer properties of the electron-deficient organoruthenium complex [(p-cymene)Ru(maleonitriledithiolate)]. This compound is found to be highly cytotoxic: 5 to 60 times more potent than cisplatin towards ovarian (A2780 and A2780cisR), colon (HCT116 p53+/+ and HCT116 p53−/−), and non-small cell lung H460 cancer cell lines. It shows no cross-resistance and is equally cytotoxic to both A2780 and A2780cisR cell lines. Furthermore, unlike cisplatin, the remarkable in vitro antiproliferative activity of this compound appears to be p53-independent. In vivo evaluation in the hollow-fibre assay across a panel of cancer cell types and subcutaneous H460 non-small cell lung cancer xenograft model hints at the activity of the complex. Although the impressive in vitro data are not fully corroborated by the in vivo follow-up, this work is the first preclinical study of electron-deficient half-sandwich complexes and highlights their promise as anticancer drug candidates. / UF150295/Royal Society; University of Bradford; Government Department of Business, Energy and Industrial Strategy; SBF003\1170/British Heart Foundation Springboard Award; AMS_/Academy of Medical Sciences/United Kingdom
|
Page generated in 0.0389 seconds