• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Holographic study of the inheritance of the morphologic variation in the mandibular second premolar a thesis submitted in partial fulfillment ... in orthodontics ... /

Chmielewski, Norman L. January 1969 (has links)
Thesis (M.S.)--University of Michigan, 1969.
2

Holographic study of the inheritance of the morphologic variation in the mandibular second premolar a thesis submitted in partial fulfillment ... in orthodontics ... /

Chmielewski, Norman L. January 1969 (has links)
Thesis (M.S.)--University of Michigan, 1969.
3

Microstructural information beyond the resolution limit : studies in two coherent, wide-field biomedical imaging systems

Hillman, Timothy R. January 2008 (has links)
No description available.
4

Real-time adaptive-optics optical coherence tomography (AOOCT) image reconstruction on a GPU

Shafer, Brandon Andrew January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Adaptive-optics optical coherence tomography (AOOCT) is a technology that has been rapidly advancing in recent years and offers amazing capabilities in scanning the human eye in vivo. In order to bring the ultra-high resolution capabilities to clinical use, however, newer technology needs to be used in the image reconstruction process. General purpose computation on graphics processing units is one such way that this computationally intensive reconstruction can be performed in a desktop computer in real-time. This work shows the process of AOOCT image reconstruction, the basics of how to use NVIDIA's CUDA to write parallel code, and a new AOOCT image reconstruction technology implemented using NVIDIA's CUDA. The results of this work demonstrate that image reconstruction can be done in real-time with high accuracy using a GPU.
5

A scalable approach to processing adaptive optics optical coherence tomography data from multiple sensors using multiple graphics processing units

Kriske, Jeffery Edward, Jr. 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Adaptive optics-optical coherence tomography (AO-OCT) is a non-invasive method of imaging the human retina in vivo. It can be used to visualize microscopic structures, making it incredibly useful for the early detection and diagnosis of retinal disease. The research group at Indiana University has a novel multi-camera AO-OCT system capable of 1 MHz acquisition rates. Until this point, a method has not existed to process data from such a novel system quickly and accurately enough on a CPU, a GPU, or one that can scale to multiple GPUs automatically in an efficient manner. This is a barrier to using a MHz AO-OCT system in a clinical environment. A novel approach to processing AO-OCT data from the unique multi-camera optics system is tested on multiple graphics processing units (GPUs) in parallel with one, two, and four camera combinations. The design and results demonstrate a scalable, reusable, extensible method of computing AO-OCT output. This approach can either achieve real time results with an AO-OCT system capable of 1 MHz acquisition rates or be scaled to a higher accuracy mode with a fast Fourier transform of 16,384 complex values.

Page generated in 0.0664 seconds