Spelling suggestions: "subject:"homéomorphismes affine para morcegos"" "subject:"homéomorphismes affiner para morcegos""
1 |
Groupes de Thompson projectifs de genre 0LAGET, Guillaume 01 July 2004 (has links) (PDF)
Le groupe de Thompson projectif $T$ est l'ensemble des homéomorphismes du bord du disque hyperbolique qui sont $PSL_2((\bf Z))$ par morceaux avec points de rupture rationnels. Pour un sous-groupe $\Gamma$ de $PSL_2((\bf Z))$ on peut construire le sous-groupe $T_(\Gamma)$ de $T$ des homéomorphismes $\Gamma$ par morceaux, et on se demande si la propriété fondamentale de $T$ d'être de type fini est conservée. Cette étude dépend du genre de la surface associée à $\Gamma$. Le but principal de notre travail est de prouver qu'en genre nul, $T_(\Gamma)$ est de présentation finie (Peter Greenberg a montré qu'en genre strictement positif $T_(\Gamma)$ n'est pas de type fini). Nous commençons par conjuguer $T_(\Gamma)$ à un groupe d'homéomorphismes affines par morceaux dont nous prouvons, à l'aide de groupes de Thompson classiques, qu'il est de type fini. Puis nous donnons une description combinatoire de $T_(\Gamma)$ par des couples de forêts infinies, description qui nous permet de déterminer une présentation infinie régulière du groupe, puis une présentation finie.
|
Page generated in 0.086 seconds