Spelling suggestions: "subject:"electriophysiology"" "subject:"electriphysiology""
1 |
Noninvasive investigation of the postural circulatory homoestatic mechanisms and autonomic neuropathy. / CUHK electronic theses & dissertations collectionJanuary 2001 (has links)
Zhang Ye. / "October 2001." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 200-224). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
2 |
Iron homeostasis in the central nervous systemJeong, Suh Young, 1974- January 2007 (has links)
No description available.
|
3 |
Role of peroxisome proliferator-activated receptor beta (PPAR[beta]) in lipid homeostasis and adipocyte differentiation.January 2007 (has links)
Li, Sui Mui. / On t.p. "beta" appears as the Greek letter. / Thesis submitted in: December 2006. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 182-189). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (Chinese) --- p.iii / Acknowledgements --- p.v / Table of contents --- p.vi / List of figures --- p.xii / List of appendices --- p.xix / Abbreviations --- p.xx / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter Chapter 2 --- Role of PPARP in adipocyte differentiation - an in vitro study --- p.20 / Chapter 2.1 --- Introduction --- p.21 / Chapter 2.2 --- Materials and Methods --- p.23 / Chapter 2.2.1 --- Preparation ofPPARβ (+/+) and PPARβ (-/-) MEFs --- p.23 / Chapter 2.2.1.1 --- Materials --- p.23 / Chapter 2.2.1.2 --- Methods --- p.23 / Chapter 2.2.1.2.1 --- Isolation of MEFs --- p.23 / Chapter 2.2.1.2.2 --- Passage ofMEF culture --- p.25 / Chapter 2.2.2 --- Genotyping of PPARβ (+/+) and PPARβ (-/-) MEFs --- p.25 / Chapter 2.2.2.1 --- Materials --- p.26 / Chapter 2.2.2.2 --- Methods --- p.26 / Chapter 2.2.2.2.1 --- Primer design --- p.26 / Chapter 2.2.2.2.2 --- Genomic DNA extraction --- p.27 / Chapter 2.2.2.2.3 --- PCR reaction --- p.29 / Chapter 2.2.3 --- Western blotting of PPARβ(+/+) and PPARβ (-/-) MEFs --- p.30 / Chapter 2.2.3.1 --- Materials --- p.30 / Chapter 2.2.3.2 --- Methods --- p.31 / Chapter 2.2.3.2.1 --- Preparation of nuclear extracts --- p.31 / Chapter 2.2.3.2.2 --- Western blot --- p.32 / Chapter 2.2.4 --- Induction of adipocyte differentiation of PPARβ (+/+) and PPARβ(-/-) MEFs --- p.33 / Chapter 2.2.4.1 --- Materials --- p.34 / Chapter 2.2.4.2 --- Methods --- p.34 / Chapter 2.2.4.2.1 --- Seeding ofMEFs --- p.34 / Chapter 2.2.4.2.2 --- Adipocyte differentiation --- p.35 / Chapter 2.2.5 --- Oil Red O staining of differentiated PPARβ(+/+) and PPARβ(-/-) MEFs --- p.36 / Chapter 2.2.5.1 --- Materials --- p.36 / Chapter 2.2.5.2 --- Method --- p.37 / Chapter 2.2.5.2.1 --- Oil Red O staining --- p.37 / Chapter 2.2.6 --- Determination of triglyceride-protein assay of differentiated PPARβ (+/+) and PPARβ (-/-) MEFs --- p.37 / Chapter 2.2.6.1 --- Materials --- p.39 / Chapter 2.2.6.2 --- Methods --- p.39 / Chapter 2.2.6.2.1 --- Lysis of differentiated MEFs --- p.39 / Chapter 2.2.6.2.2 --- Measurement of triglyceride concentration in cell lysate --- p.40 / Chapter 2.2.6.2.3 --- Measurement of protein concentration in cell lysate --- p.41 / Chapter 2.2.7 --- Preparation of PPARβ(+/+) and PPARβ (-/-) MEF RNA for RT-PCR and Northern blot analysis --- p.42 / Chapter 2.2.7.1 --- Materials --- p.42 / Chapter 2.2.7.2 --- Method --- p.42 / Chapter 2.2.7.2.1 --- RNA isolation --- p.42 / Chapter 2.2.8 --- RT-PCR analysis of differentiated PPARβ(+/+) and PPARβ (-/-) MEFs --- p.44 / Chapter 2.2.8.1 --- Materials --- p.45 / Chapter 2.2.8.2 --- Methods --- p.45 / Chapter 2.2.8.2.1 --- Primer design --- p.45 / Chapter 2.2.8.2.2 --- RT-PCR --- p.46 / Chapter 2.2.9 --- Northern blot analysis of differentiated PPARβ(+/+) and PPARβ (-/-) MEFs --- p.47 / Chapter 2.2.9.1 --- Materials --- p.48 / Chapter 2.2.9.2 --- Methods --- p.49 / Chapter 2.2.9.2.1 --- Preparation of cDNA probes for Northern blotting --- p.49 / Chapter 2.2.9.2.1.1 --- RNA extraction --- p.49 / Chapter 2.2.9.2.1.2 --- Primer design --- p.49 / Chapter 2.2.9.2.1.3 --- RT-PCR of extracted mRNA --- p.50 / Chapter 2.2.9.2.1.4 --- Subcloning of amplified cDNA products --- p.50 / Chapter 2.2.9.2.1.5 --- Screening of recombinant clones by phenol-chloroform extraction --- p.51 / Chapter 2.2.9.2.1.6 --- Confirmation of the recombinant clones by restriction enzyme site mapping --- p.52 / Chapter 2.2.9.2.1.7 --- Confirmation of the recombinant clones by PCR method --- p.52 / Chapter 2.2.9.2.1.8 --- Mini-preparation of plasmid DNA from the selected recombinant clones --- p.54 / Chapter 2.2.9.2.1.9 --- Preparation of cDNA probes --- p.54 / Chapter 2.2.9.2.1.10 --- Formaldehyde agarose gel electrophoresis of RNA --- p.55 / Chapter 2.2.9.2.1.11 --- Hybridization and color development --- p.56 / Chapter 2.3 --- Results --- p.58 / Chapter 2.3.1 --- Confirmation of PPARβ(+/+) and PPARβ (-/-) MEFs genotypes --- p.58 / Chapter 2.3.2 --- PPARβ (-/-) MEFs differentiated similarly to PPARβ(+/+) MEFs as measured by Oil Red O staining --- p.61 / Chapter 2.3.3 --- PPARβ (-/-) MEFs differentiated similarly to PPARβ(+/+) MEFs as reflected by their intracellular triglyceride contents --- p.64 / Chapter 2.3.4 --- PPARβ(-/-) MEFs expressed the adipocyte differentiation marker genes similarly to PPARβ (+/+) MEFs --- p.66 / Chapter 2.4 --- Discussion --- p.77 / Chapter Chapter 3 --- Role of PPARβ in adipocyte differentiation and lipid homeostasis - an in vivo study --- p.82 / Chapter 3.1 --- Introduction --- p.83 / Chapter 3.2 --- Materials and Methods --- p.85 / Chapter 3.2.1 --- Animal and high fat diet treatment --- p.85 / Chapter 3.2.1.1 --- Materials --- p.85 / Chapter 3.2.1.2 --- Method --- p.86 / Chapter 3.2.1.2.1 --- Animal treatment --- p.86 / Chapter 3.2.2 --- Tail-genotyping of PPARβ (+/+) and PPARβ (-/-) mice --- p.87 / Chapter 3.2.2.1 --- Materials --- p.87 / Chapter 3.2.2.2 --- Methods --- p.88 / Chapter 3.2.2.2.1 --- DNA extraction from tail --- p.88 / Chapter 3.2.2.2.2 --- PCR tail-genotyping --- p.89 / Chapter 3.2.3 --- "Measurement of serum triglyceride, cholesterol and glucose levels by enzymatic and spectrophometric methods" --- p.89 / Chapter 3.2.3.1 --- Materials --- p.90 / Chapter 3.2.3.2 --- Methods --- p.91 / Chapter 3.2.3.2.1 --- Serum preparation --- p.91 / Chapter 3.2.3.2.2 --- Measurement of serum triglycerides --- p.91 / Chapter 3.2.3.2.3 --- Measurement of serum cholesterol --- p.92 / Chapter 3.2.3.2.3 --- Measurement of serum glucose --- p.93 / Chapter 3.2.4 --- Measurement of serum insulin and leptin levels by ELISA --- p.94 / Chapter 3.2.4.1 --- Materials --- p.95 / Chapter 3.2.4.2 --- Methods --- p.95 / Chapter 3.2.4.2.1 --- Measurement of serum insulin --- p.95 / Chapter 3.2.4.2.2 --- Measurement of serum leptin --- p.97 / Chapter 3.2.5 --- "Histological studies of liver, interscapular BF and gonadal WF pads" --- p.99 / Chapter 3.2.5.1 --- Materials --- p.100 / Chapter 3.2.5.2 --- Methods --- p.100 / Chapter 3.2.5.2.1 --- "Fixation, dehydration, embedding in paraffin and sectioning" --- p.100 / Chapter 3.2.5.2.2 --- H&E staining --- p.101 / Chapter 3.2.6 --- Analyses of fecal lipid contents --- p.102 / Chapter 3.2.6.1 --- Materials --- p.102 / Chapter 3.2.6.2 --- Method --- p.103 / Chapter 3.2.6.2.1 --- Extraction of lipid contents from stools --- p.103 / Chapter 3.2.7 --- Statistical analysis --- p.104 / Chapter 3.3 --- Results --- p.105 / Chapter 3.3.1 --- Confirmation of genotypes by PCR --- p.105 / Chapter 3.3.2 --- PPARβ (-/-) mice were more resistant to high fat diet-induced obesity --- p.105 / Chapter 3.3.3 --- PPARβ (-/-) mice consumed similarly as to PPARβ (+/+) counterparts… --- p.122 / Chapter 3.3.4 --- Effect of high fat diet on organ weights --- p.128 / Chapter 3.3.4.1 --- PPARβ (-/-) mice were more resistant to high fat diet-induced liver hepatomegaly --- p.134 / Chapter 3.3.4.2 --- PPARβ (-/-) mice were resistant to high fat diet-induced increased white fat depots --- p.134 / Chapter 3.3.4.3 --- PPARβ (-/-) mice were resistant to high fat diet-induced increased brown fat mass --- p.137 / Chapter 3.3.5 --- Effect of high fat diet on organ histology --- p.142 / Chapter 3.3.5.1 --- PPARβ(-/-) mice were more resistant to high fat diet-induced liver steatosis --- p.143 / Chapter 3.3.5.2 --- No defect in white adipocyte expansion in PPARβ(-/-) mice upon high fat diet feeding --- p.153 / Chapter 3.3.5.3 --- No defect in brown adipocyte expansion in PPARβ (-/-) mice upon high fat diet feeding --- p.159 / Chapter 3.3.6 --- "Effect on high fat diet on serum cholesterol, triglyceride, glucose, insulin and leptin levels" --- p.164 / Chapter 3.3.6.1 --- "PPARβ (-/-) mice had a lower serum cholesterol level, but a similar triglyceride level as compared to PPARβ (+/+) mice upon high fat diet feeding" --- p.165 / Chapter 3.3.6.2 --- PPARβ (-/-) mice were resistant to high fat diet-induced insulin resistance --- p.167 / Chapter 3.3.6.3 --- PPARβ (-/-) mice had a similar serum leptin level as PPARβ (+/+) mice --- p.170 / Chapter 3.3.7 --- No decision made in fecal lipid content of PPARβ (+/+) and PPARβ (-/-) mice --- p.173 / Chapter 3.4 --- Discussion --- p.176 / References --- p.182 / Appendices --- p.190
|
Page generated in 0.0623 seconds