Spelling suggestions: "subject:"homogénéité cosmologique"" "subject:"homogénéités cosmologique""
1 |
L'univers aux grandes échelles : études de l'homogénéité cosmique et de l'énergie noire à partir des relevés de quasars BOSS et eBOSS / The universe on large scales : studies of cosmic homogeneity and dark energy with the BOSS et eBOSS quasar surveysLaurent, Pierre 14 September 2016 (has links)
Ce travail de thèse se sépare en deux volets. Le premier volet concerne l'étude de l'homogénéité de l'univers, et le second une mesure de l'échelle BAO, qui constitue une règle standard permettant de mesurer l'évolution du taux d'expansion de l'univers. Ces deux analyses reposent sur l'étude de la structuration (ou clustering) des quasars des relevés BOSS et eBOSS, qui couvrent la gamme en redshift 0,9 < z < 2,8. Les mesures des observables caractérisant la structuration de l'univers aux grandes échelles sont très sensibles aux effets systématiques, nous avons donc étudiés ces effets en profondeur. Nous avons mis en évidence que les sélections de cibles quasars BOSS et eBOSS ne sont pas parfaitement homogènes, et corrigé cet effet. Au final, la mesure de la fonction de corrélation des quasars nous a permis de mesurer le biais des quasars sur la gamme en redshift 0,9 < z < 2,8. Nous obtenons la mesure actuelle la plus précise du biais, b = 3,85 ± 0,11 dans la gamme 2,2 < z < 2,8 pour le relevé BOSS, et b = 2,44 ± 0,04 dans la gamme 0,9 < z < 2,2 pour le relevé eBOSS. Le Principe Cosmologique stipule que notre univers est isotrope et homogène à grande échelle. Il s'agit d'un des postulats de base de la cosmologie moderne. En étudiant la structuration à très grande échelle des quasars, nous avons prouvé l'isotropie spatiale de l'univers dans la gamme 0,9 < z < 2,8, indépendamment de toute hypothèse et cosmologie fiducielle. L'isotropie spatiale stipule que l'univers est isotrope dans chaque couche de redshift. En la combinant au principe de Copernic, qui stipule que nous ne nous situons pas à une position particulière dans l'univers, permet de prouver que notre univers est homogène aux grandes échelles. Nous avons effectué une mesure de la dimension de corrélation fractale de l'univers, D₂(r), en utilisant un nouvel estimateur, inspiré de l'estimateur de Landy-Szalay pour la fonction de corrélation. En corrigeant notre estimateur du biais des quasars, nous avons mesuré (3 - D₂(r)) = (6,0 ± 2,1) x 10⁻⁵ entre 250 h⁻¹ Mpc et 1200 h⁻¹ Mpc pour le relevé eBOSS, dans la gamme 0,9 < z < 2,2. Pour le relevé BOSS, nous obtenons (3 - D₂(r)) = (3,9 ± 2,1) x 10⁻⁵, dans la gamme 2,2 < z < 2,8. De plus, nous montrons que le modèle Lambda-CDM décrit très bien la transition d'un régime structuré vers un régime homogène. D’autre part, nous avons mesuré la position du pic BAO dans les fonctions de corrélation des quasars BOSS et eBOSS, détecté à 2,5 sigma dans les deux relevés. Si nous mesurons le paramètre α, qui correspond au rapport entre la position du pic mesuré et la position prédite par une cosmologie fiducielle (en utilisant les paramètres Planck 2013), nous mesurons α = 1,074 pour le relevé BOSS, et α = 1,009 pour le relevé eBOSS. Ces mesures, combinées uniquement à la mesure locale de H₀, nous permettent de contraindre l'espace des paramètres de modèles au-delà du Lambda-CDM. / This work consists in two parts. The first one is a study of cosmic homogeneity, and the second one a measurement of the BAO scale, which provides a standard ruler that allows for a direct measurement of the expansion rate of the universe. These two analyses rely on the study of quasar clustering in the BOSS and eBOSS quasar samples, which cover the redshift range 0.9 < z < 2.8. On large scales, the measurement of statistical observables is very sensitive to systematic effects, so we deeply studied these effects. We found evidences that the target selections of BOSS and eBOSS quasars are not perfectly homogeneous, and we have corrected this effect. The measurement of the quasar correlation function provides the quasar bias in the redshift range 0.9 < z < 2.8. We obtain the most precise measurement of the quasar bias at high redshift, b = 3.85 ± 0.11, in the range 2.2 < z < 2.8 for the BOSS survey, and b = 2.44 ± 0.04 in the range 0.9 < z < 2.2 for the eBOSS survey. The Cosmological Principle states that the universe is homogeneous and isotropic on large scales. It is one of the basic assumptions of modern cosmology. By studying quasar clustering on large scales, we have proved ''spatial isotropy'', i.e. the fact that the universe is isotropic in each redshift bins. This has been done in the range 0.9 < z < 2.8 without any assumption or fiducial cosmology. If we combine spatial isotropy with the Copernican Principle, which states that we do not occupy a peculiar place in the universe, it is proved that the universe is homogeneous on large scales. We provide a measurement of the fractal correlation dimension of the universe, D₂(r), which is 3 for an homogeneous distribution, and we used a new estimator inspired from the Landy-Szalay estimator for the correlation function. If we correct our measurement for quasar bias, we obtain (3 - D₂(r)) = (6.0 ± 2.1) x 10⁻⁵ between 250 h⁻¹ Mpc and 1200 h⁻¹ Mpc for eBOSS, in the range 0.9 < z < 2.2. For BOSS, we obtain (3 - D₂(r)) = (3.9 ± 2.1) x 10⁻⁵, in the range 2.2 < z < 2.8. Moreover, we have shown that the Lambda-CDM model provide a very nice description of the transition from structures to homogeneity. We have also measured the position of the BAO peak in the BOSS and eBOSS quasar correlation functions, which yield a 2,5 sigma detection in both surveys. If we measure the α parameter, which corresponds to the ratio of the measured position of the peak to the predicted position in a fiducial cosmology (here Planck 2013), we measure α = 1.074 for BOSS, and α = 1.009 for eBOSS. These measurements, combined only with the local measurement of H₀, allows for constraints in parameter space for models beyond Lambda-CDM.
|
Page generated in 0.0387 seconds