• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Probing the expansion history of the universe using upernovae and Baryon Acoustic Oscillations

Ali, Sahba Yahya Hamid January 2016 (has links)
Philosophiae Doctor - PhD / The standard model of cosmology (the ɅCDM model) has been very successful and is compatible with all observational data up to now. However, it remains an important task to develop and apply null tests of this model. These tests are based on observables that probe cosmic distances and cosmic evolution history. Supernovae observations use the so-called `standard candle' property of SNIa to probe cosmic distances D(z). The evolution of the expansion rate H(z) is probed by the baryon acoustic oscillation (BAO) feature in the galaxy distribution, which serves as an effective `standard ruler'. The observables D(z) and H(z) are used in various consistency tests of ɅCDM that have been developed. We review the consistency tests, also looking for possible new tests. Then the tests are applied, first using existing data, and then using mock data from future planned experiments. In particular we use data from the recently commissioned Dark Energy Survey (DES) for SNIa. Gaussian Processes, and possibly other non-parametric methods, used to reconstruct the derivatives of D (z) and H (z) that are needed to apply the null tests of the standard cosmological model. This allows us to estimate the current and future power of observations to probe the ɅCDM model, which is the foundation of modern cosmology. In addition, we present an improved model of the HI galaxy number counts and bias from semi-analytic simulations, and we use it to calculate the expected yield of HI galaxies from surveys with a variety of phase 1 and 2 SKA configurations. We illustrate the relative performance of the different surveys by forecasting errors on the radial and transverse scales of the BAO feature. We use the Fisher matrix method to estimate the error bars on the cosmological parameters from future SKA HI galaxy surveys. We find that the SKA phase 1 galaxy surveys will not contend with surveys such as the Baryon Oscillation Spectroscopic Survey (BOSS) whereas the full "billion galaxy survey" with SKA phase 2 will deliver the largest dark energy Figure of Merit of any current or future large-scale structure survey. / South African Square Kilometre Array Project (SKA) and German Academic Exchange Service (DAAD)
2

L'univers aux grandes échelles : études de l'homogénéité cosmique et de l'énergie noire à partir des relevés de quasars BOSS et eBOSS / The universe on large scales : studies of cosmic homogeneity and dark energy with the BOSS et eBOSS quasar surveys

Laurent, Pierre 14 September 2016 (has links)
Ce travail de thèse se sépare en deux volets. Le premier volet concerne l'étude de l'homogénéité de l'univers, et le second une mesure de l'échelle BAO, qui constitue une règle standard permettant de mesurer l'évolution du taux d'expansion de l'univers. Ces deux analyses reposent sur l'étude de la structuration (ou clustering) des quasars des relevés BOSS et eBOSS, qui couvrent la gamme en redshift 0,9 < z < 2,8. Les mesures des observables caractérisant la structuration de l'univers aux grandes échelles sont très sensibles aux effets systématiques, nous avons donc étudiés ces effets en profondeur. Nous avons mis en évidence que les sélections de cibles quasars BOSS et eBOSS ne sont pas parfaitement homogènes, et corrigé cet effet. Au final, la mesure de la fonction de corrélation des quasars nous a permis de mesurer le biais des quasars sur la gamme en redshift 0,9 < z < 2,8. Nous obtenons la mesure actuelle la plus précise du biais, b = 3,85 ± 0,11 dans la gamme 2,2 < z < 2,8 pour le relevé BOSS, et b = 2,44 ± 0,04 dans la gamme 0,9 < z < 2,2 pour le relevé eBOSS. Le Principe Cosmologique stipule que notre univers est isotrope et homogène à grande échelle. Il s'agit d'un des postulats de base de la cosmologie moderne. En étudiant la structuration à très grande échelle des quasars, nous avons prouvé l'isotropie spatiale de l'univers dans la gamme 0,9 < z < 2,8, indépendamment de toute hypothèse et cosmologie fiducielle. L'isotropie spatiale stipule que l'univers est isotrope dans chaque couche de redshift. En la combinant au principe de Copernic, qui stipule que nous ne nous situons pas à une position particulière dans l'univers, permet de prouver que notre univers est homogène aux grandes échelles. Nous avons effectué une mesure de la dimension de corrélation fractale de l'univers, D₂(r), en utilisant un nouvel estimateur, inspiré de l'estimateur de Landy-Szalay pour la fonction de corrélation. En corrigeant notre estimateur du biais des quasars, nous avons mesuré (3 - D₂(r)) = (6,0 ± 2,1) x 10⁻⁵ entre 250 h⁻¹ Mpc et 1200 h⁻¹ Mpc pour le relevé eBOSS, dans la gamme 0,9 < z < 2,2. Pour le relevé BOSS, nous obtenons (3 - D₂(r)) = (3,9 ± 2,1) x 10⁻⁵, dans la gamme 2,2 < z < 2,8. De plus, nous montrons que le modèle Lambda-CDM décrit très bien la transition d'un régime structuré vers un régime homogène. D’autre part, nous avons mesuré la position du pic BAO dans les fonctions de corrélation des quasars BOSS et eBOSS, détecté à 2,5 sigma dans les deux relevés. Si nous mesurons le paramètre α, qui correspond au rapport entre la position du pic mesuré et la position prédite par une cosmologie fiducielle (en utilisant les paramètres Planck 2013), nous mesurons α = 1,074 pour le relevé BOSS, et α = 1,009 pour le relevé eBOSS. Ces mesures, combinées uniquement à la mesure locale de H₀, nous permettent de contraindre l'espace des paramètres de modèles au-delà du Lambda-CDM. / This work consists in two parts. The first one is a study of cosmic homogeneity, and the second one a measurement of the BAO scale, which provides a standard ruler that allows for a direct measurement of the expansion rate of the universe. These two analyses rely on the study of quasar clustering in the BOSS and eBOSS quasar samples, which cover the redshift range 0.9 < z < 2.8. On large scales, the measurement of statistical observables is very sensitive to systematic effects, so we deeply studied these effects. We found evidences that the target selections of BOSS and eBOSS quasars are not perfectly homogeneous, and we have corrected this effect. The measurement of the quasar correlation function provides the quasar bias in the redshift range 0.9 < z < 2.8. We obtain the most precise measurement of the quasar bias at high redshift, b = 3.85 ± 0.11, in the range 2.2 < z < 2.8 for the BOSS survey, and b = 2.44 ± 0.04 in the range 0.9 < z < 2.2 for the eBOSS survey. The Cosmological Principle states that the universe is homogeneous and isotropic on large scales. It is one of the basic assumptions of modern cosmology. By studying quasar clustering on large scales, we have proved ''spatial isotropy'', i.e. the fact that the universe is isotropic in each redshift bins. This has been done in the range 0.9 < z < 2.8 without any assumption or fiducial cosmology. If we combine spatial isotropy with the Copernican Principle, which states that we do not occupy a peculiar place in the universe, it is proved that the universe is homogeneous on large scales. We provide a measurement of the fractal correlation dimension of the universe, D₂(r), which is 3 for an homogeneous distribution, and we used a new estimator inspired from the Landy-Szalay estimator for the correlation function. If we correct our measurement for quasar bias, we obtain (3 - D₂(r)) = (6.0 ± 2.1) x 10⁻⁵ between 250 h⁻¹ Mpc and 1200 h⁻¹ Mpc for eBOSS, in the range 0.9 < z < 2.2. For BOSS, we obtain (3 - D₂(r)) = (3.9 ± 2.1) x 10⁻⁵, in the range 2.2 < z < 2.8. Moreover, we have shown that the Lambda-CDM model provide a very nice description of the transition from structures to homogeneity. We have also measured the position of the BAO peak in the BOSS and eBOSS quasar correlation functions, which yield a 2,5 sigma detection in both surveys. If we measure the α parameter, which corresponds to the ratio of the measured position of the peak to the predicted position in a fiducial cosmology (here Planck 2013), we measure α = 1.074 for BOSS, and α = 1.009 for eBOSS. These measurements, combined only with the local measurement of H₀, allows for constraints in parameter space for models beyond Lambda-CDM.
3

Clustering Analysis in Configuration Space and Cosmological Implications of the SDSS-IV eBOSS Quasar Sample / Analyse des corrélations spatiales des quasars et implications cosmologiques avec le multi-spectrographe SDSS-IV eBOSS

Zarrouk, Pauline 01 October 2018 (has links)
Le modèle ΛCDM de la cosmologie repose sur l’existence d’une composante exotique, appelée énergie noire, pour expliquer l’accélération tardive de l’expansion de l’univers à z < 0.7. Des alternatives à cette constante cosmologique proposent de modifier la théorie de la gravitation basée sur la relativité générale aux échelles cosmologiques. Depuis l’automne 2014, le multi-spectrographe SDSS-eBOSS effectue un relevé de quasars dans un domaine en redshift peu exploré entre 0.8 ≤ z ≤ 2.2 dont l’un des objectifs majeurs est d’étendre les contraintes sur la nature de l’énergie noire et de tester la validité de la théorie de la relativité générale à plus haut redshift en utilisant les quasars comme traceurs de la matière.Dans cette thèse, nous mesurons et analysons la fonction de corrélation à deux points de l’échantillon de quasars obtenu après deux ans d'observation de eBOSS pour contraindre les distances cosmiques, à savoir la distance angulaire DA et le taux d'expansion H, ainsi que le taux de croissance des structures fσ8 à un redshift effectif Zeff = 1.52. Nous commençons par construire des catalogues des grandes structures qui prennent en compte la géométrie angulaire et radiale du relevé. Puis pour obtenir des contraintes robustes, nous identifions plusieurs sources d’effets systématiques, en particulier ceux liés à la modélisation et aux observations sont étudiées avec des « mock catalogues » dédiés qui correspondent à des réalisations fictives de l’échantillon de quasars eBOSS. Les paramètres cosmologiques de ces catalogues fictifs étant connus, ils sont utilisés comme référence pour tester notre procédure d’analyse. Les résultats de ce travail sur l’évolution des distances cosmiques sont compatibles avec les prédictions du modèle ΛCDM utilisant les paramètres de Planck et basé sur l’existence d’une constante cosmologique. La mesure du taux de croissance des structures est compatible avec la prédiction de ce modèle basé sur la relativité générale, ce qui étend ainsi la validité de la théorie aux échelles cosmologiques à grand redshift. Nous utilisons également notre mesure pour mettre à jour les contraintes sur les modèles d'extensions à ΛCDM et sur les scénarios de gravité modifiée. Ce travail de thèse constitue une première étude menée avec les données de quasars eBOSS et sera utilisée pour l’analyse de l’échantillon final à la fin 2019 ou l’on attend une amélioration de la précision statistique d’un facteur 2. Associé à BOSS, eBOSS ouvrira la voie pour les futurs programmes d’observation, comme le télescope au sol DESI et le satellite Euclid. Ces deux programmes sonderont intensivement l’époque de l’univers entre 1 < z < 2 en observant plusieurs millions de spectres, ce qui permettra d'améliorer d'un ordre de grandeur au moins les contraintes actuelles sur les paramètres cosmologiques. / The ΛCDM model of cosmology assumes the existence of an exotic component, called dark energy, to explain the late-time acceleration of the expansion of the universe at redshift z < 0.7. Alternative scenarios to this cosmological constant suggest to modify the theory of gravitation based on general relativity at cosmological scales. Since fall 2014, the SDSS-IV eBOSS multi-object spectrograph has undertaken a survey of quasars in the almost unexplored redshift range 0.8 ≤ z ≤ 2.2 with the key science goal to complement the constraints on dark energy and extend the test of general relativity at higher redshifts by using quasars as direct tracers of the matter field.In this thesis work, we measure and analyse the two-point correlation function of the two-year data taking of eBOSS quasar sample to constrain the cosmic distances, i.e. the angular diameter distance DA and the expansion rate H, and the growth rate of structure fσ8 at an effective redshift Zeff = 1.52. First, we build large-scale structure catalogues that account for the angular and radial incompleteness of the survey. Then to obtain robust results, we investigate several potential systematics, in particular modeling and observational systematics are studied using dedicated mock catalogs which are fictional realizations of the data sample. These mocks are created with known cosmological parameters such that they are used as a benchmark to test the analysis pipeline. The results on the evolution of distances are consistent with the predictions for ΛCDM with Planck parameters assuming a cosmological constant. The measurement of the growth of structure is consistent with general relativity and hence extends its validity to higher redshift. We also provide updated constraints on extensions of ΛCDM and models of modified gravity. This study is a first use of eBOSS quasars as tracers of the matter field and will be included in the analysis of the final eBOSS sample at the end of 2019 with an expected improvement on the statistical precision of a factor 2. Together with BOSS, eBOSS will pave the way for future programs such as the ground-based Dark Energy Spectroscopic Instrument (DESI) and the space-based mission Euclid. Both programs will extensively probe the intermediate redshift range 1 < z < 2 with millions of spectra, improving the cosmological constraints by an order of magnitude with respect to current measurements.

Page generated in 0.053 seconds