• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Production of biodiesel from corn oil and ethanol by homogeneous alkali catalyzed transesterification / Tillverkning av biodiesel frånj majsolja och etanol genom homogen baskatalyserad transesterifiering

Mendez, Atahualpa January 2011 (has links)
This report gives a general overview on biodiesel production, its motivations, characteristics and recent developments, mainly focused in the Brazilian case. The Brazilian National Program for Production and Use of Biodiesel (PNPB) launched 2003 created a demand of biodiesel and stimulated the biodiesel production. Biodiesel is being produced from soybean oil, followed by animal fats and cottonseed oil, with palm and castor bean oil contributing in small portions. The biodiesel expansion has impacts on environmental and social issues such as deforestation from soya expansion and a decrease of employment levels due to the high degree of mechanization of the soya harvest. Experimental work was developed, using corn oil, ethanol and NaOH as a catalyst. Experiments were made varying significant parameters to find the optimum reaction temperature, reaction time, catalyst amount and molar ratio between ethanol and corn oil. Besides that, another experiment aimed to describe the yield behavior as a function of the reaction time. The produced biodiesel has been characterized by measurements of density, refraction index and viscosity. The amount of 0.4 wt % NaOH, based on the weight of raw oil, was enough to catalyze the reaction of transesterification effectively. A higher amount of alcohol in excess provides a higher yield at mild temperature conditions. But the higher amount of alcohol used, the higher the amount of alcohol in excess presented in the biodiesel phase which has to be eliminated. An increase of the temperature from 40˚C to 50˚C  does not increase the yield in a considerable way. Thus due to the energy saving it is not recommended to increase the temperature to 50˚C. Regarding the evaluation of the conversion as function of time, a high conversion is obtained after 90 min. An extension of the reaction time from 90 to 150min had no significant effect.
2

Production of biodiesel from sunflower oil and ethanol by base catalyzed transesterification / Produktion av biodiesel från solrosolja  och etanol genom baskatalyserad omförestring

Sales, Alejandro January 2011 (has links)
Biodiesel is an attractive alternative fuel for diesel engines.The feedstock for biodiesel production is usually vegetable oil, pure oil or waste cooking oil, or animal fats The most common way today to produce biodiesel is by transesterification of the oils with an alcohol in the presence of an alkaline catalyst. It is a low temperature and low-pressure reaction. It yields high conversion (96%-98%) with minimal side reactions and short reaction time. It is a direct conversion to biodiesel with no intermediate compounds. This work provides an overview concerning biodiesel production. Likewise, this work focuses on the commercial production of biodiesel. The Valdescorriel Biodiesel plant, located in Zamora (Spain), is taken like model of reference to study the profitability and economics of a biodiesel plant. The Valdescorriel Biodiesel plant has a nominal production capacity of 20000 biodiesel tons per year. The initial investment for the biodiesel plant construction is the 4.5 millions €. The benefits are 2 million €/year. The investment is possible to recuperate in less than 3 years. The biodiesel yield can up to 98% with catalyst in excess. The energy used for the biodiesel production is 30% less than the obtained energy from the produced biodiesel. Replacing petro diesel by the biodiesel produced in the plant, the CO2 reduction can reach the 48%. It means that 55 000 tons CO2 per year can be reduced The production of biodiesel from sunflower oil and ethanol using sodium hydroxide as catalyst was performed in the laboratory and the results are discussed. The results are analyzed using the statistic method of Total Quality. The effect of the ethanol/oil ratio and the amount of used catalyst on the yield as well on the properties of the produced biodiesel is studied. The measured properties of the biodiesel are density, viscosity and refraction. The ethanol/oil ratio influences on the biodiesel production. The yield of biodiesel increases with the ethanol/oil ratio.  Regarding the influence of the amount of catalyst on biodiesel production in the studied condition is not possible to achieve a definitive conclusion. But a tendency showing an increasing of the biodiesel yield with the amount of catalyst can be appreciated. The study of the evolution of the transesterification during time shows that a reaction time of one hour is sufficient enough in order to reach the highest yield of biodiesel.

Page generated in 0.0686 seconds