Spelling suggestions: "subject:"homology off groups"" "subject:"homology oof groups""
1 |
Automorphism groups of quadratic modules and manifoldsFriedrich, Nina January 2018 (has links)
In this thesis we prove homological stability for both general linear groups of modules over a ring with finite stable rank and unitary groups of quadratic modules over a ring with finite unitary stable rank. In particular, we do not assume the modules and quadratic modules to be well-behaved in any sense: for example, the quadratic form may be singular. This extends results by van der Kallen and Mirzaii--van der Kallen respectively. Combining these results with the machinery introduced by Galatius--Randal-Williams to prove homological stability for moduli spaces of simply-connected manifolds of dimension $2n \geq 6$, we get an extension of their result to the case of virtually polycyclic fundamental groups. We also prove the corresponding result for manifolds equipped with tangential structures. A result on the stable homology groups of moduli spaces of manifolds by Galatius--Randal-Williams enables us to make new computations using our homological stability results. In particular, we compute the abelianisation of the mapping class groups of certain $6$-dimensional manifolds. The first computation considers a manifold built from $\mathbb{R} P^6$ which involves a partial computation of the Adams spectral sequence of the spectrum ${MT}$Pin$^{-}(6)$. For the second computation we consider Spin $6$-manifolds with $\pi_1 \cong \mathbb{Z} / 2^k \mathbb{Z}$ and $\pi_2 = 0$, where the main new ingredient is an~analysis of the Atiyah--Hirzebruch spectral sequence for $MT\mathrm{Spin}(6) \wedge \Sigma^{\infty} B\mathbb{Z}/2^k\mathbb{Z}_+$. Finally, we consider the similar manifolds with more general fundamental groups $G$, where $K_1(\mathbb{Q}[G^{\mathrm{ab}}])$ plays a role.
|
2 |
Sequências espectrais de Lyndon-Hochschild-Serre e de Cartan-Leray, e algumas aplicaçõesGomes, Neila Mara [UNESP] 27 January 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-01-27Bitstream added on 2014-06-13T20:47:35Z : No. of bitstreams: 1
gomes_nm_me_sjrp.pdf: 689280 bytes, checksum: e326708cb7096ea2640f86118ab525a2 (MD5) / Neste trabalho apresentamos um estudo da sequência espectral associada à uma filtração (finita) de um complexo de cadeias de módulos sobre um anel arbitrário R. Em especial, destacamos as sequências espectrais de Lyndon-Hochschild-Serre e de Cartan-Leray, e algumas aplicações na teoria de homologia. / In this work we present a study of the spectral sequence associated to the filltration (finite) of a chain complex of modules on an arbitrary ring R. In special, we emphasize the spectral sequences of Lyndon-Hochschild-Serre and Cartan-Leray and some applications in the homology theory.
|
3 |
Sequências espectrais de Lyndon-Hochschild-Serre e de Cartan-Leray, e algumas aplicações /Gomes, Neila Mara. January 2009 (has links)
Orientador: Ermínia de Lourdes Campello Fanti / Banca: Luiz Queiroz Pegher / Banca: João Peres Vieira / Resumo: Neste trabalho apresentamos um estudo da sequência espectral associada à uma filtração (finita) de um complexo de cadeias de módulos sobre um anel arbitrário R. Em especial, destacamos as sequências espectrais de Lyndon-Hochschild-Serre e de Cartan-Leray, e algumas aplicações na teoria de homologia. / Abstract: In this work we present a study of the spectral sequence associated to the filltration (finite) of a chain complex of modules on an arbitrary ring R. In special, we emphasize the spectral sequences of Lyndon-Hochschild-Serre and Cartan-Leray and some applications in the homology theory. / Mestre
|
Page generated in 0.0509 seconds