• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 9
  • Tagged with
  • 20
  • 18
  • 17
  • 17
  • 12
  • 11
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Strongly Private Communications in a Homogeneous Network / Communications anonymes dans un réseau homogène

Guellier, Antoine 22 May 2017 (has links)
L’avènement de l’ère digitale a changé la façon dont les individus communiquent à travers le monde, et a amené de nouvelles problématiques en terme de vie privée. La notion d’anonymat la plus répandue pour les communications sur Internet consiste à empêcher tout acteur du réseau de connaître à la fois l’expéditeur d’un message et son destinataire. Bien que ce niveau de protection soit adéquat pour l’utilisateur d’Internet moyen, il est insuffisant lorsqu’un individu peut être condamné pour le simple envoi de documents à une tierce partie. C’est le cas en particulier des lanceurs d’alerte, prenant des risques personnels pour informer le public de pratiques illégales ou antidémocratiques menées par de grandes organisations. Dans cette thèse, nous envisageons un niveau d’anonymat plus fort, où l’objectif est de dissimuler le fait même qu’un utilisateur envoie ou reçoive des données. Pour cela, nous délaissons l’architecture client-serveur couramment utilisée dans les réseaux anonymes, en faveur d’une architecture entièrement distribuée et homogène, où chaque utilisateur remplit également le rôle de serveur relai, lui permettant de dissimuler son propre trafic dans celui qu’il relai pour les autres. Dans cette optique, nous proposons un nouveau protocole pour les communications pairs à pairs sur Internet. À l’aide de récents outils de preuves cryptographiques, nous prouvons que ce protocole réalise les propriétés d’anonymat désirées. De plus, nous montrons par une étude pratique que, bien que le protocole induise une grande latence dans les communications, il assure un fort anonymat, même pour des réseaux de petite taille. / With the development of online communications in the past decades, new privacy concerns have emerged. A lot of research effort have been focusing on concealing relationships in Internet communications. However, most works do not prevent particular network actors from learning the original sender or the intended receiver of a communication. While this level of privacy is satisfactory for the common citizen, it is insufficient in contexts where individuals can be convicted for the mere sending of documents to a third party. This is the case for so-called whistle-blowers, who take personal risks to alert the public of anti-democratic or illegal actions performed by large organisations. In this thesis, we consider a stronger notion of anonymity for peer-to-peer communications on the Internet, and aim at concealing the very fact that users take part in communications. To this end, we deviate from the traditional client-server architecture endorsed by most existing anonymous networks, in favor of a homogeneous, fully distributed architecture in which every user also acts as a relay server, allowing it to conceal its own traffic in the traffic it relays for others. In this setting, we design an Internet overlay inspired from previous works, that also proposes new privacy-enhancing mechanisms, such as the use of relationship pseudonyms for managing identities. We formally prove with state-of-the-art cryptographic proof frameworks that this protocol achieves our privacy goals. Furthermore, a practical study of the protocol shows that it introduces high latency in the delivery of messages, but ensures a high anonymity level even for networks of small size.
12

Cryptographie homomorphe et transcodage d’image/video dans le domaine chiffré / Homomorphic encryption and image/video transcoding in the encrypted domain

Nokam Kuaté, Donald 14 December 2018 (has links)
L'apparition de nouvelles technologies comme l'informatique en nuages (cloud computing) offre de nouvelles opportunités de traitement de l'information. Par exemple, il est désormais facile de stocker ses photos ou vidéos personnelles sur des serveurs distants. Il est également possible de partager ces contenus à travers ces mêmes serveurs, ou encore via les réseaux sociaux ou les plateformes de téléchargement. Cependant, ces données personnelles sont bien souvent accessibles par le fournisseur de service, essentiellement pour des raisons pratiques : par exemple adapter une vidéo pour qu'elle s'affiche au bon format quel que soit l'appareil utilisé pour la visionner, permettre le partage de ses contenus avec d’autres personnes, etc. Cela soulève cependant un problème de confidentialité de ces données personnelles, et de confiance dans le fournisseur du service. La cryptographie classique apporte des solutions à ce problème, mais soulève malheureusement celui de la maniabilité des données : il devient par exemple impossible d'adapter un contenu vidéo au bon format d'affichage puisque le fournisseur ne peut plus « voir » la vidéo. Une solution alternative réside toutefois dans le chiffrement homomorphe. Cet outil un peu magique de la cryptographie avancée apporte la même sécurité que les algorithmes de cryptographie classique, mais permet de plus de manipuler les données tout en conservant leur forme chiffrée. Il offre ainsi une nouvelle perspective pour les fournisseurs puisque ceux-ci peuvent continuer à traiter l'information sans être capable de la voir, et donc sans atteinte à la vie privée de leurs utilisateurs, se conformant ainsi au nouveau Règlement Général sur la Protection des Données (RGPD). Bien que le chiffrement homomorphe soit très souvent considéré comme insuffisamment mature, du fait de sa complexité algorithmique, cette thèse cherche à montrer son caractère prometteur, en s'intéressant à son usage pour le traitement d'images et de vidéos chiffrées à la source. Nous regardons ainsi les différents algorithmes qui constituent un encodeur d'image/vidéo (JPEG/H264 et HEVC) et les transformons en des circuits qui sont manipulables par des systèmes de chiffrement homomorphes. Nous proposons ainsi dans cette thèse le tout premier pipeline de compression d'images de type JPEG ("homomorphic-JPEG") sur des pixels qui sont chiffrés de bout-en-bout. Pour optimiser la gestion des données ainsi protégées, nous proposons également de nouveaux outils applicables à tous les schémas de chiffrement homomorphe sur les réseaux idéaux. Notre approche permet de maximiser le nombre de slots dans un chiffré et introduit de nouvelles fonctions pour manipuler ces différents slots de manière indépendante les uns des autres. Ces travaux de thèse ont abouti à la publication de deux articles dans des conférences internationales ainsi qu’à la soumission d'un article supplémentaire. / The emergence of new technologies like cloud computing brings new opportunities in information processing. For example it is easy today to send our personal pictures or videos to a remote server (Google Drive, OneDrive …). We can also share this content among the same servers or via social networks and streaming services. However, this personal data is often also available to the service provider, mainly for practical reasons e.g. to configure a video to have the right format regardless of the displayer (smartphone or computer), to share our data with other people, etc. This raises issues of privacy and trust into the service provider. Classical cryptography brings some answers to this kind of issues, yet leaving the problem of handling the encrypted data: e.g., it becomes impossible to reconfigure a video because the provider can no longer “see” it. An alternative solution is “homomorphic encryption”. It is a powerful tool of advanced cryptography which provides the same security as classical cryptography algorithms, but it still allows us to manipulate ciphertexts such their underlying plaintexts are modified. Consequently, it offers a new perspective to service providers since they can continue to process their clients’information without knowing what it contains. This allows them to provide privacy-preserving services and comply with the new General Data Protection Regulation (GDPR). Although it is considered that homomorphic encryption does not have enough maturity due to its large algorithmic complexity, in this thesis, we are trying to show its potential by using it in the context of image and video processing over the encrypted data. In this context, we look at the different algorithms in an image/video encoder (JPEG/H264 and HEVC) and transform them to circuits which can be manipulated by homomorphic encryption schemes. Our main contribution is to propose the first pipeline for an image compression of type JPEG (homomorphic-JPEG) running on end-to-end encrypted pixels. To optimize the management of the encrypted data, we also propose new tools applicable to existing homomorphic encryption schemes over the ring version of lattices. Our approach allows us to maximize the number of slots in some ciphertext and we introduce new functions allowing to handle these slots independently in the encrypted domain. This thesis work also lead to two publications to international conferences as well as the submission of an additional article.
13

Signature électronique basée sur les réseaux euclidiens et échantillonnage selon une loi normale discrète / Lattice-based digital signature and discrete gaussian sampling

Ricosset, Thomas 12 November 2018 (has links)
La cryptographie à base de réseaux euclidiens a généré un vif intérêt durant les deux dernièresdécennies grâce à des propriétés intéressantes, incluant une conjecture de résistance àl’ordinateur quantique, de fortes garanties de sécurité provenant d’hypothèses de difficulté sur lepire cas et la construction de schémas de chiffrement pleinement homomorphes. Cela dit, bienqu’elle soit cruciale à bon nombre de schémas à base de réseaux euclidiens, la génération debruit gaussien reste peu étudiée et continue de limiter l’efficacité de cette cryptographie nouvelle.Cette thèse s’attelle dans un premier temps à améliorer l’efficacité des générateurs de bruitgaussien pour les signatures hache-puis-signe à base de réseaux euclidiens. Nous proposons unnouvel algorithme non-centré, avec un compromis temps-mémoire flexible, aussi rapide que savariante centrée pour des tables pré-calculées de tailles acceptables en pratique. Nousemployons également la divergence de Rényi afin de réduire la précision nécessaire à la doubleprécision standard. Notre second propos tient à construire Falcon, un nouveau schéma designature hache-puis-signe, basé sur la méthode théorique de Gentry, Peikert et Vaikuntanathanpour les signatures à base de réseaux euclidiens. Nous instancions cette méthode sur les réseauxNTRU avec un nouvel algorithme de génération de trappes. / Lattice-based cryptography has generated considerable interest in the last two decades due toattractive features, including conjectured security against quantum attacks, strong securityguarantees from worst-case hardness assumptions and constructions of fully homomorphicencryption schemes. On the other hand, even though it is a crucial part of many lattice-basedschemes, Gaussian sampling is still lagging and continues to limit the effectiveness of this newcryptography. The first goal of this thesis is to improve the efficiency of Gaussian sampling forlattice-based hash-and-sign signature schemes. We propose a non-centered algorithm, with aflexible time-memory tradeoff, as fast as its centered variant for practicable size of precomputedtables. We also use the Rényi divergence to bound the precision requirement to the standarddouble precision. Our second objective is to construct Falcon, a new hash-and-sign signaturescheme, based on the theoretical framework of Gentry, Peikert and Vaikuntanathan for latticebasedsignatures. We instantiate that framework over NTRU lattices with a new trapdoor sampler.
14

Conception and implémentation de cryptographie à base de réseaux

Lepoint, Tancrède 30 June 2014 (has links) (PDF)
La cryptographie à base de réseaux euclidiens est aujourd'hui un domaine scientifique en pleine expansion et connait une évolution rapide et accélérée par l'attractivité du chiffrement complètement homomorphe ou des applications multilinéaires cryptographiques. Ses propriétés sont très attractives : une sécurité pouvant être réduite à la difficulté des pires cas de problèmes sur les réseaux euclidiens, une efficacité asymptotique quasi-optimale et une résistance présupposée aux ordinateurs quantiques. Cependant, on dénombre encore peu de résultats de recherche sur les constructions à visée pratique pour un niveau de sécurité fixé. Cette thèse s'inscrit dans cette direction et travaille à réduire l'écart entre la théorie et la pratique de la cryptographie à clé publique récente. Dans cette thèse, nous concevons et implémentons une signature numérique basée sur les réseaux euclidiens, deux schémas de chiffrement complètement homomorphe et des applications multilinéaires cryptographiques. Notre signature digitale ultra-performante, BLISS, ouvre la voie à la mise en pratique de la cryptographie à base de réseaux sur petites architectures et est un candidat sérieux à la cryptographie post-quantique. Nos schémas de chiffrement complètement homomorphes permettent d'évaluer des circuits non triviaux de manière compétitive. Finalement, nous proposons la première implémentation d'applications multilinéaires et réalisons, pour la première fois, un échange de clé non interactif entre plus de trois participants en quelques secondes.
15

Cloud security mechanisms

January 2014 (has links)
Cloud computing has brought great benefits in cost and flexibility for provisioning services. The greatest challenge of cloud computing remains however the question of security. The current standard tools in access control mechanisms and cryptography can only partly solve the security challenges of cloud infrastructures. In the recent years of research in security and cryptography, novel mechanisms, protocols and algorithms have emerged that offer new ways to create secure services atop cloud infrastructures. This report provides introductions to a selection of security mechanisms that were part of the "Cloud Security Mechanisms" seminar in summer term 2013 at HPI. / Cloud Computing hat deutliche Kostenersparnisse und verbesserte Flexibilität bei der Bereitstellung von Computer-Diensten ermöglicht. Allerdings bleiben Sicherheitsbedenken die größte Herausforderung bei der Nutzung von Cloud-Diensten. Die etablierten Mechanismen für Zugriffskontrolle und Verschlüsselungstechnik können die Herausforderungen und Probleme der Sicherheit von Cloud-Infrastrukturen nur teilweise lösen. In den letzten Jahren hat die Forschung jedoch neue Mechanismen, Protokolle und Algorithmen hervorgebracht, welche neue Möglichkeiten eröffnen die Sicherheit von Cloud-Anwendungen zu erhöhen. Dieser technische Bericht bietet Einführungen zu einigen dieser Mechanismen, welche im Seminar "Cloud Security Mechanisms" im Sommersemester 2013 am HPI behandelt wurden.
16

Microcontrôleur à flux chiffré d'instructions et de données / Design and implementation of a microprocessor working with encrypted instructions and data

Hiscock, Thomas 07 December 2017 (has links)
Un nombre important et en constante augmentation de systèmes numériques nous entoure. Tablettes, smartphones et objets connectés ne sont que quelques exemples apparents de ces technologies omniprésentes, dont la majeure partie est enfouie, invisible à l'utilisateur. Les microprocesseurs, au cœur de ces systèmes, sont soumis à de fortes contraintes en ressources, sûreté de fonctionnement et se doivent, plus que jamais, de proposer une sécurité renforcée. La tâche est d'autant plus complexe qu'un tel système, par sa proximité avec l'utilisateur, offre une large surface d'attaque.Cette thèse, se concentre sur une propriété essentielle attendue pour un tel système, la confidentialité, le maintien du secret du programme et des données qu'il manipule. En effet, l'analyse du programme, des instructions qui le compose, est une étape essentielle dans la conception d'une attaque. D'autre part, un programme est amené à manipuler des données sensibles (clés cryptographiques, mots de passes, ...), qui doivent rester secrètes pour ne pas compromettre la sécurité du système.Cette thèse, se concentre sur une propriété essentielle attendue pour un tel système, la confidentialité, le maintien du secret du programme et des données qu'il manipule. Une première contribution de ces travaux est une méthode de chiffrement d'un code, basée sur le graphe de flot de contrôle, rendant possible l'utilisation d'algorithmes de chiffrement par flots, légers et efficaces. Protéger les accès mémoires aux données d'un programme s'avère plus complexe. Dans cette optique, nous proposons l'utilisation d'un chiffrement homomorphe pour chiffrer les données stockées en mémoire et les maintenir sous forme chiffrée lors de l'exécution des instructions. Enfin, nous présenterons l'intégration de ces propositions dans une architecture de processeur et les résultats d'évaluation sur logique programmable (FPGA) avec plusieurs programmes d'exemples. / Embedded processors are today ubiquitous, dozen of them compose and orchestrate every technology surrounding us, from tablets to smartphones and a large amount of invisible ones. At the core of these systems, processors gather data, process them and interact with the outside world. As such, they are excepted to meet very strict safety and security requirements. From a security perspective, the task is even more difficult considering the user has a physical access to the device, allowing a wide range of specifically tailored attacks.Confidentiality, in terms of both software code and data is one of the fundamental properties expected for such systems. The first contribution of this work is a software encryption method based on the control flow graph of the program. This enables the use of stream ciphers to provide lightweight and efficient encryption, suitable for constrained processors. The second contribution is a data encryption mechanism based on homomorphic encryption. With this scheme, sensible data remain encrypted not only in memory, but also during computations. Then, the integration and evaluation of these solutions on Field Programmable Gate Array (FPGA) with some example programs will be discussed.
17

Vers l'efficacité et la sécurité du chiffrement homomorphe et du cloud computing / Towards efficient and secure Fully Homomorphic Encryption and cloud computing

Chillotti, Ilaria 17 May 2018 (has links)
Le chiffrement homomorphe est une branche de la cryptologie, dans laquelle les schémas de chiffrement offrent la possibilité de faire des calculs sur les messages chiffrés, sans besoin de les déchiffrer. L’intérêt pratique de ces schémas est dû à l’énorme quantité d'applications pour lesquels ils peuvent être utilisés. En sont un exemple le vote électronique, les calculs sur des données sensibles, comme des données médicales ou financières, le cloud computing, etc..Le premier schéma de chiffrement (complètement) homomorphe n'a été proposé qu'en 2009 par Gentry. Il a introduit une technique appelée bootstrapping, utilisée pour réduire le bruit des chiffrés : en effet, dans tous les schémas de chiffrement homomorphe proposés, les chiffrés contiennent une petite quantité de bruit, nécessaire pour des raisons de sécurité. Quand on fait des calculs sur les chiffrés bruités, le bruit augmente et, après avoir évalué un certain nombre d’opérations, ce bruit devient trop grand et, s'il n'est pas contrôlé, risque de compromettre le résultat des calculs.Le bootstrapping est du coup fondamental pour la construction des schémas de chiffrement homomorphes, mais est une technique très coûteuse, qu'il s'agisse de la mémoire nécessaire ou du temps de calcul. Les travaux qui on suivi la publication de Gentry ont eu comme objectif celui de proposer de nouveaux schémas et d’améliorer le bootstrapping pour rendre le chiffrement homomorphe faisable en pratique. L’une des constructions les plus célèbres est GSW, proposé par Gentry, Sahai et Waters en 2013. La sécurité du schéma GSW se fonde sur le problème LWE (learning with errors), considéré comme difficile en pratique. Le bootstrapping le plus rapide, exécuté sur un schéma de type GSW, a été proposé en 2015 par Ducas et Micciancio. Dans cette thèse on propose une nouvelle variante du schéma de chiffrement homomorphe de Ducas et Micciancio, appelée TFHE.Le schéma TFHE améliore les résultats précédents, en proposant un bootstrapping plus rapide (de l'ordre de quelques millisecondes) et des clés de bootstrapping plus petites, pour un même niveau de sécurité. TFHE utilise des chiffrés de type TLWE et TGSW (scalaire et ring) : l’accélération du bootstrapping est principalement due à l’utilisation d’un produit externe entre TLWE et TGSW, contrairement au produit externe GSW utilisé dans la majorité des constructions précédentes.Deux types de bootstrapping sont présentés. Le premier, appelé gate bootstrapping, est exécuté après l’évaluation homomorphique d’une porte logique (binaire ou Mux) ; le deuxième, appelé circuit bootstrapping, peut être exécuté après l’évaluation d’un nombre d'opérations homomorphiques plus grand, pour rafraîchir le résultat ou pour le rendre compatible avec la suite des calculs.Dans cette thèse on propose aussi de nouvelles techniques pour accélérer l’évaluation des calculs homomorphiques, sans bootstrapping, et des techniques de packing des données. En particulier, on présente un packing, appelé vertical packing, qui peut être utilisé pour évaluer efficacement des look-up table, on propose une évaluation via automates déterministes pondérés, et on présente un compteur homomorphe appelé TBSR qui peut être utilisé pour évaluer des fonctions arithmétiques.Pendant les travaux de thèse, le schéma TFHE a été implémenté et il est disponible en open source.La thèse contient aussi des travaux annexes. Le premier travail concerne l’étude d’un premier modèle théorique de vote électronique post-quantique basé sur le chiffrement homomorphe, le deuxième analyse la sécurité des familles de chiffrement homomorphe dans le cas d'une utilisation pratique sur le cloud, et le troisième ouvre sur une solution différente pour le calcul sécurisé, le calcul multi-partite. / Fully homomorphic encryption is a new branch of cryptology, allowing to perform computations on encrypted data, without having to decrypt them. The main interest of homomorphic encryption schemes is the large number of practical applications for which they can be used. Examples are given by electronic voting, computations on sensitive data, such as medical or financial data, cloud computing, etc..The first fully homomorphic encryption scheme has been proposed in 2009 by Gentry. He introduced a new technique, called bootstrapping, used to reduce the noise in ciphertexts: in fact, in all the proposed homomorphic encryption schemes, the ciphertexts contain a small amount of noise, which is necessary for security reasons. If we perform computations on noisy ciphertexts, the noise increases and, after a certain number of operations, the noise becomes to large and it could compromise the correctness of the final result, if not controlled.Bootstrapping is then fundamental to construct fully homomorphic encryption schemes, but it is very costly in terms of both memory and time consuming.After Gentry’s breakthrough, the presented schemes had the goal to propose new constructions and to improve bootstrapping, in order to make homomorphic encryption practical. One of the most known schemes is GSW, proposed by Gentry, Sahai et Waters in 2013. The security of GSW is based on the LWE (learning with errors) problem, which is considered hard in practice. The most rapid bootstrapping on a GSW-based scheme has been presented by Ducas and Micciancio in 2015. In this thesis, we propose a new variant of the scheme proposed by Ducas and Micciancio, that we call TFHE.The TFHE scheme improves previous results, by performing a faster bootstrapping (in the range of a few milliseconds) and by using smaller bootstrapping keys, for the same security level. TFHE uses TLWE and TGSW ciphertexts (both scalar and ring): the acceleration of bootstrapping is mainly due to the replacement of the internal GSW product, used in the majority of previous constructions, with an external product between TLWE and TGSW.Two kinds of bootstrapping are presented. The first one, called gate bootstrapping, is performed after the evaluation of a homomorphic gate (binary or Mux); the second one, called circuit bootstrapping, can be executed after the evaluation of a larger number of homomorphic operations, in order to refresh the result or to make it compatible with the following computations.In this thesis, we also propose new techniques to improve homomorphic computations without bootstrapping and new packing techniques. In particular, we present a vertical packing, that can be used to efficiently evaluate look-up tables, we propose an evaluation via weighted deterministic automata, and we present a homomorphic counter, called TBSR, that can be used to evaluate arithmetic functions.During the thesis, the TFHE scheme has been implemented and it is available in open source.The thesis contains also ancillary works. The first one concerns the study of the first model of post-quantum electronic voting based on fully homomorphic encryption, the second one analyzes the security of homomorphic encryption in a practical cloud implementation scenario, and the third one opens up about a different solution for secure computing, multi-party computation.
18

Chiffrement homomorphe et recherche par le contenu sécurisé de données externalisées et mutualisées : Application à l'imagerie médicale et l'aide au diagnostic / Homomorphic encryption and secure content based image retieval over outsourced data : Application to medical imaging and diagnostic assistance

Bellafqira, Reda 19 December 2017 (has links)
La mutualisation et l'externalisation de données concernent de nombreux domaines y compris celui de la santé. Au-delà de la réduction des coûts de maintenance, l'intérêt est d'améliorer la prise en charge des patients par le déploiement d'outils d'aide au diagnostic fondés sur la réutilisation des données. Dans un tel environnement, la sécurité des données (confidentialité, intégrité et traçabilité) est un enjeu majeur. C'est dans ce contexte que s'inscrivent ces travaux de thèse. Ils concernent en particulier la sécurisation des techniques de recherche d'images par le contenu (CBIR) et de « machine learning » qui sont au c'ur des systèmes d'aide au diagnostic. Ces techniques permettent de trouver des images semblables à une image requête non encore interprétée. L'objectif est de définir des approches capables d'exploiter des données externalisées et sécurisées, et de permettre à un « cloud » de fournir une aide au diagnostic. Plusieurs mécanismes permettent le traitement de données chiffrées, mais la plupart sont dépendants d'interactions entre différentes entités (l'utilisateur, le cloud voire un tiers de confiance) et doivent être combinés judicieusement de manière à ne pas laisser fuir d'information lors d'un traitement.Au cours de ces trois années de thèse, nous nous sommes dans un premier temps intéressés à la sécurisation à l'aide du chiffrement homomorphe, d'un système de CBIR externalisé sous la contrainte d'aucune interaction entre le fournisseur de service et l'utilisateur. Dans un second temps, nous avons développé une approche de « Machine Learning » sécurisée fondée sur le perceptron multicouches, dont la phase d'apprentissage peut être externalisée de manière sûre, l'enjeu étant d'assurer la convergence de cette dernière. L'ensemble des données et des paramètres du modèle sont chiffrés. Du fait que ces systèmes d'aides doivent exploiter des informations issues de plusieurs sources, chacune externalisant ses données chiffrées sous sa propre clef, nous nous sommes intéressés au problème du partage de données chiffrées. Un problème traité par les schémas de « Proxy Re-Encryption » (PRE). Dans ce contexte, nous avons proposé le premier schéma PRE qui permet à la fois le partage et le traitement des données chiffrées. Nous avons également travaillé sur un schéma de tatouage de données chiffrées pour tracer et vérifier l'intégrité des données dans cet environnement partagé. Le message tatoué dans le chiffré est accessible que l'image soit ou non chiffrée et offre plusieurs services de sécurité fondés sur le tatouage. / Cloud computing has emerged as a successful paradigm allowing individuals and companies to store and process large amounts of data without a need to purchase and maintain their own networks and computer systems. In healthcare for example, different initiatives aim at sharing medical images and Personal Health Records (PHR) in between health professionals or hospitals with the help of the cloud. In such an environment, data security (confidentiality, integrity and traceability) is a major issue. In this context that these thesis works, it concerns in particular the securing of Content Based Image Retrieval (CBIR) techniques and machine learning (ML) which are at the heart of diagnostic decision support systems. These techniques make it possible to find similar images to an image not yet interpreted. The goal is to define approaches that can exploit secure externalized data and enable a cloud to provide a diagnostic support. Several mechanisms allow the processing of encrypted data, but most are dependent on interactions between different entities (the user, the cloud or a trusted third party) and must be combined judiciously so as to not leak information. During these three years of thesis, we initially focused on securing an outsourced CBIR system under the constraint of no interaction between the users and the service provider (cloud). In a second step, we have developed a secure machine learning approach based on multilayer perceptron (MLP), whose learning phase can be outsourced in a secure way, the challenge being to ensure the convergence of the MLP. All the data and parameters of the model are encrypted using homomorphic encryption. Because these systems need to use information from multiple sources, each of which outsources its encrypted data under its own key, we are interested in the problem of sharing encrypted data. A problem known by the "Proxy Re-Encryption" (PRE) schemes. In this context, we have proposed the first PRE scheme that allows both the sharing and the processing of encrypted data. We also worked on watermarking scheme over encrypted data in order to trace and verify the integrity of data in this shared environment. The embedded message is accessible whether or not the image is encrypted and provides several services.
19

Fully homomorphic encryption for machine learning / Chiffrement totalement homomorphe pour l'apprentissage automatique

Minelli, Michele 26 October 2018 (has links)
Le chiffrement totalement homomorphe permet d’effectuer des calculs sur des données chiffrées sans fuite d’information sur celles-ci. Pour résumer, un utilisateur peut chiffrer des données, tandis qu’un serveur, qui n’a pas accès à la clé de déchiffrement, peut appliquer à l’aveugle un algorithme sur ces entrées. Le résultat final est lui aussi chiffré, et il ne peut être lu que par l’utilisateur qui possède la clé secrète. Dans cette thèse, nous présentons des nouvelles techniques et constructions pour le chiffrement totalement homomorphe qui sont motivées par des applications en apprentissage automatique, en portant une attention particulière au problème de l’inférence homomorphe, c’est-à-dire l’évaluation de modèles cognitifs déjà entrainé sur des données chiffrées. Premièrement, nous proposons un nouveau schéma de chiffrement totalement homomorphe adapté à l’évaluation de réseaux de neurones artificiels sur des données chiffrées. Notre schéma atteint une complexité qui est essentiellement indépendante du nombre de couches dans le réseau, alors que l’efficacité des schéma proposés précédemment dépend fortement de la topologie du réseau. Ensuite, nous présentons une nouvelle technique pour préserver la confidentialité du circuit pour le chiffrement totalement homomorphe. Ceci permet de cacher l’algorithme qui a été exécuté sur les données chiffrées, comme nécessaire pour protéger les modèles propriétaires d’apprentissage automatique. Notre mécanisme rajoute un coût supplémentaire très faible pour un niveau de sécurité égal. Ensemble, ces résultats renforcent les fondations du chiffrement totalement homomorphe efficace pour l’apprentissage automatique, et représentent un pas en avant vers l’apprentissage profond pratique préservant la confidentialité. Enfin, nous présentons et implémentons un protocole basé sur le chiffrement totalement homomorphe pour le problème de recherche d’information confidentielle, c’est-à-dire un scénario où un utilisateur envoie une requête à une base de donnée tenue par un serveur sans révéler cette requête. / Fully homomorphic encryption enables computation on encrypted data without leaking any information about the underlying data. In short, a party can encrypt some input data, while another party, that does not have access to the decryption key, can blindly perform some computation on this encrypted input. The final result is also encrypted, and it can be recovered only by the party that possesses the secret key. In this thesis, we present new techniques/designs for FHE that are motivated by applications to machine learning, with a particular attention to the problem of homomorphic inference, i.e., the evaluation of already trained cognitive models on encrypted data. First, we propose a novel FHE scheme that is tailored to evaluating neural networks on encrypted inputs. Our scheme achieves complexity that is essentially independent of the number of layers in the network, whereas the efficiency of previously proposed schemes strongly depends on the topology of the network. Second, we present a new technique for achieving circuit privacy for FHE. This allows us to hide the computation that is performed on the encrypted data, as is necessary to protect proprietary machine learning algorithms. Our mechanism incurs very small computational overhead while keeping the same security parameters. Together, these results strengthen the foundations of efficient FHE for machine learning, and pave the way towards practical privacy-preserving deep learning. Finally, we present and implement a protocol based on homomorphic encryption for the problem of private information retrieval, i.e., the scenario where a party wants to query a database held by another party without revealing the query itself.
20

Secure and Efficient Comparisons between Untrusted Parties

Beck, Martin 11 September 2018 (has links)
A vast number of online services is based on users contributing their personal information. Examples are manifold, including social networks, electronic commerce, sharing websites, lodging platforms, and genealogy. In all cases user privacy depends on a collective trust upon all involved intermediaries, like service providers, operators, administrators or even help desk staff. A single adversarial party in the whole chain of trust voids user privacy. Even more, the number of intermediaries is ever growing. Thus, user privacy must be preserved at every time and stage, independent of the intrinsic goals any involved party. Furthermore, next to these new services, traditional offline analytic systems are replaced by online services run in large data centers. Centralized processing of electronic medical records, genomic data or other health-related information is anticipated due to advances in medical research, better analytic results based on large amounts of medical information and lowered costs. In these scenarios privacy is of utmost concern due to the large amount of personal information contained within the centralized data. We focus on the challenge of privacy-preserving processing on genomic data, specifically comparing genomic sequences. The problem that arises is how to efficiently compare private sequences of two parties while preserving confidentiality of the compared data. It follows that the privacy of the data owner must be preserved, which means that as little information as possible must be leaked to any party participating in the comparison. Leakage can happen at several points during a comparison. The secured inputs for the comparing party might leak some information about the original input, or the output might leak information about the inputs. In the latter case, results of several comparisons can be combined to infer information about the confidential input of the party under observation. Genomic sequences serve as a use-case, but the proposed solutions are more general and can be applied to the generic field of privacy-preserving comparison of sequences. The solution should be efficient such that performing a comparison yields runtimes linear in the length of the input sequences and thus producing acceptable costs for a typical use-case. To tackle the problem of efficient, privacy-preserving sequence comparisons, we propose a framework consisting of three main parts. a) The basic protocol presents an efficient sequence comparison algorithm, which transforms a sequence into a set representation, allowing to approximate distance measures over input sequences using distance measures over sets. The sets are then represented by an efficient data structure - the Bloom filter -, which allows evaluation of certain set operations without storing the actual elements of the possibly large set. This representation yields low distortion for comparing similar sequences. Operations upon the set representation are carried out using efficient, partially homomorphic cryptographic systems for data confidentiality of the inputs. The output can be adjusted to either return the actual approximated distance or the result of an in-range check of the approximated distance. b) Building upon this efficient basic protocol we introduce the first mechanism to reduce the success of inference attacks by detecting and rejecting similar queries in a privacy-preserving way. This is achieved by generating generalized commitments for inputs. This generalization is done by treating inputs as messages received from a noise channel, upon which error-correction from coding theory is applied. This way similar inputs are defined as inputs having a hamming distance of their generalized inputs below a certain predefined threshold. We present a protocol to perform a zero-knowledge proof to assess if the generalized input is indeed a generalization of the actual input. Furthermore, we generalize a very efficient inference attack on privacy-preserving sequence comparison protocols and use it to evaluate our inference-control mechanism. c) The third part of the framework lightens the computational load of the client taking part in the comparison protocol by presenting a compression mechanism for partially homomorphic cryptographic schemes. It reduces the transmission and storage overhead induced by the semantically secure homomorphic encryption schemes, as well as encryption latency. The compression is achieved by constructing an asymmetric stream cipher such that the generated ciphertext can be converted into a ciphertext of an associated homomorphic encryption scheme without revealing any information about the plaintext. This is the first compression scheme available for partially homomorphic encryption schemes. Compression of ciphertexts of fully homomorphic encryption schemes are several orders of magnitude slower at the conversion from the transmission ciphertext to the homomorphically encrypted ciphertext. Indeed our compression scheme achieves optimal conversion performance. It further allows to generate keystreams offline and thus supports offloading to trusted devices. This way transmission-, storage- and power-efficiency is improved. We give security proofs for all relevant parts of the proposed protocols and algorithms to evaluate their security. A performance evaluation of the core components demonstrates the practicability of our proposed solutions including a theoretical analysis and practical experiments to show the accuracy as well as efficiency of approximations and probabilistic algorithms. Several variations and configurations to detect similar inputs are studied during an in-depth discussion of the inference-control mechanism. A human mitochondrial genome database is used for the practical evaluation to compare genomic sequences and detect similar inputs as described by the use-case. In summary we show that it is indeed possible to construct an efficient and privacy-preserving (genomic) sequences comparison, while being able to control the amount of information that leaves the comparison. To the best of our knowledge we also contribute to the field by proposing the first efficient privacy-preserving inference detection and control mechanism, as well as the first ciphertext compression system for partially homomorphic cryptographic systems.

Page generated in 0.0296 seconds