• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 9
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 64
  • 64
  • 22
  • 20
  • 15
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 9
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Chiffrement homomorphe et recherche par le contenu sécurisé de données externalisées et mutualisées : Application à l'imagerie médicale et l'aide au diagnostic / Homomorphic encryption and secure content based image retieval over outsourced data : Application to medical imaging and diagnostic assistance

Bellafqira, Reda 19 December 2017 (has links)
La mutualisation et l'externalisation de données concernent de nombreux domaines y compris celui de la santé. Au-delà de la réduction des coûts de maintenance, l'intérêt est d'améliorer la prise en charge des patients par le déploiement d'outils d'aide au diagnostic fondés sur la réutilisation des données. Dans un tel environnement, la sécurité des données (confidentialité, intégrité et traçabilité) est un enjeu majeur. C'est dans ce contexte que s'inscrivent ces travaux de thèse. Ils concernent en particulier la sécurisation des techniques de recherche d'images par le contenu (CBIR) et de « machine learning » qui sont au c'ur des systèmes d'aide au diagnostic. Ces techniques permettent de trouver des images semblables à une image requête non encore interprétée. L'objectif est de définir des approches capables d'exploiter des données externalisées et sécurisées, et de permettre à un « cloud » de fournir une aide au diagnostic. Plusieurs mécanismes permettent le traitement de données chiffrées, mais la plupart sont dépendants d'interactions entre différentes entités (l'utilisateur, le cloud voire un tiers de confiance) et doivent être combinés judicieusement de manière à ne pas laisser fuir d'information lors d'un traitement.Au cours de ces trois années de thèse, nous nous sommes dans un premier temps intéressés à la sécurisation à l'aide du chiffrement homomorphe, d'un système de CBIR externalisé sous la contrainte d'aucune interaction entre le fournisseur de service et l'utilisateur. Dans un second temps, nous avons développé une approche de « Machine Learning » sécurisée fondée sur le perceptron multicouches, dont la phase d'apprentissage peut être externalisée de manière sûre, l'enjeu étant d'assurer la convergence de cette dernière. L'ensemble des données et des paramètres du modèle sont chiffrés. Du fait que ces systèmes d'aides doivent exploiter des informations issues de plusieurs sources, chacune externalisant ses données chiffrées sous sa propre clef, nous nous sommes intéressés au problème du partage de données chiffrées. Un problème traité par les schémas de « Proxy Re-Encryption » (PRE). Dans ce contexte, nous avons proposé le premier schéma PRE qui permet à la fois le partage et le traitement des données chiffrées. Nous avons également travaillé sur un schéma de tatouage de données chiffrées pour tracer et vérifier l'intégrité des données dans cet environnement partagé. Le message tatoué dans le chiffré est accessible que l'image soit ou non chiffrée et offre plusieurs services de sécurité fondés sur le tatouage. / Cloud computing has emerged as a successful paradigm allowing individuals and companies to store and process large amounts of data without a need to purchase and maintain their own networks and computer systems. In healthcare for example, different initiatives aim at sharing medical images and Personal Health Records (PHR) in between health professionals or hospitals with the help of the cloud. In such an environment, data security (confidentiality, integrity and traceability) is a major issue. In this context that these thesis works, it concerns in particular the securing of Content Based Image Retrieval (CBIR) techniques and machine learning (ML) which are at the heart of diagnostic decision support systems. These techniques make it possible to find similar images to an image not yet interpreted. The goal is to define approaches that can exploit secure externalized data and enable a cloud to provide a diagnostic support. Several mechanisms allow the processing of encrypted data, but most are dependent on interactions between different entities (the user, the cloud or a trusted third party) and must be combined judiciously so as to not leak information. During these three years of thesis, we initially focused on securing an outsourced CBIR system under the constraint of no interaction between the users and the service provider (cloud). In a second step, we have developed a secure machine learning approach based on multilayer perceptron (MLP), whose learning phase can be outsourced in a secure way, the challenge being to ensure the convergence of the MLP. All the data and parameters of the model are encrypted using homomorphic encryption. Because these systems need to use information from multiple sources, each of which outsources its encrypted data under its own key, we are interested in the problem of sharing encrypted data. A problem known by the "Proxy Re-Encryption" (PRE) schemes. In this context, we have proposed the first PRE scheme that allows both the sharing and the processing of encrypted data. We also worked on watermarking scheme over encrypted data in order to trace and verify the integrity of data in this shared environment. The embedded message is accessible whether or not the image is encrypted and provides several services.
62

Fully homomorphic encryption for machine learning / Chiffrement totalement homomorphe pour l'apprentissage automatique

Minelli, Michele 26 October 2018 (has links)
Le chiffrement totalement homomorphe permet d’effectuer des calculs sur des données chiffrées sans fuite d’information sur celles-ci. Pour résumer, un utilisateur peut chiffrer des données, tandis qu’un serveur, qui n’a pas accès à la clé de déchiffrement, peut appliquer à l’aveugle un algorithme sur ces entrées. Le résultat final est lui aussi chiffré, et il ne peut être lu que par l’utilisateur qui possède la clé secrète. Dans cette thèse, nous présentons des nouvelles techniques et constructions pour le chiffrement totalement homomorphe qui sont motivées par des applications en apprentissage automatique, en portant une attention particulière au problème de l’inférence homomorphe, c’est-à-dire l’évaluation de modèles cognitifs déjà entrainé sur des données chiffrées. Premièrement, nous proposons un nouveau schéma de chiffrement totalement homomorphe adapté à l’évaluation de réseaux de neurones artificiels sur des données chiffrées. Notre schéma atteint une complexité qui est essentiellement indépendante du nombre de couches dans le réseau, alors que l’efficacité des schéma proposés précédemment dépend fortement de la topologie du réseau. Ensuite, nous présentons une nouvelle technique pour préserver la confidentialité du circuit pour le chiffrement totalement homomorphe. Ceci permet de cacher l’algorithme qui a été exécuté sur les données chiffrées, comme nécessaire pour protéger les modèles propriétaires d’apprentissage automatique. Notre mécanisme rajoute un coût supplémentaire très faible pour un niveau de sécurité égal. Ensemble, ces résultats renforcent les fondations du chiffrement totalement homomorphe efficace pour l’apprentissage automatique, et représentent un pas en avant vers l’apprentissage profond pratique préservant la confidentialité. Enfin, nous présentons et implémentons un protocole basé sur le chiffrement totalement homomorphe pour le problème de recherche d’information confidentielle, c’est-à-dire un scénario où un utilisateur envoie une requête à une base de donnée tenue par un serveur sans révéler cette requête. / Fully homomorphic encryption enables computation on encrypted data without leaking any information about the underlying data. In short, a party can encrypt some input data, while another party, that does not have access to the decryption key, can blindly perform some computation on this encrypted input. The final result is also encrypted, and it can be recovered only by the party that possesses the secret key. In this thesis, we present new techniques/designs for FHE that are motivated by applications to machine learning, with a particular attention to the problem of homomorphic inference, i.e., the evaluation of already trained cognitive models on encrypted data. First, we propose a novel FHE scheme that is tailored to evaluating neural networks on encrypted inputs. Our scheme achieves complexity that is essentially independent of the number of layers in the network, whereas the efficiency of previously proposed schemes strongly depends on the topology of the network. Second, we present a new technique for achieving circuit privacy for FHE. This allows us to hide the computation that is performed on the encrypted data, as is necessary to protect proprietary machine learning algorithms. Our mechanism incurs very small computational overhead while keeping the same security parameters. Together, these results strengthen the foundations of efficient FHE for machine learning, and pave the way towards practical privacy-preserving deep learning. Finally, we present and implement a protocol based on homomorphic encryption for the problem of private information retrieval, i.e., the scenario where a party wants to query a database held by another party without revealing the query itself.
63

Secure and Efficient Comparisons between Untrusted Parties

Beck, Martin 11 September 2018 (has links)
A vast number of online services is based on users contributing their personal information. Examples are manifold, including social networks, electronic commerce, sharing websites, lodging platforms, and genealogy. In all cases user privacy depends on a collective trust upon all involved intermediaries, like service providers, operators, administrators or even help desk staff. A single adversarial party in the whole chain of trust voids user privacy. Even more, the number of intermediaries is ever growing. Thus, user privacy must be preserved at every time and stage, independent of the intrinsic goals any involved party. Furthermore, next to these new services, traditional offline analytic systems are replaced by online services run in large data centers. Centralized processing of electronic medical records, genomic data or other health-related information is anticipated due to advances in medical research, better analytic results based on large amounts of medical information and lowered costs. In these scenarios privacy is of utmost concern due to the large amount of personal information contained within the centralized data. We focus on the challenge of privacy-preserving processing on genomic data, specifically comparing genomic sequences. The problem that arises is how to efficiently compare private sequences of two parties while preserving confidentiality of the compared data. It follows that the privacy of the data owner must be preserved, which means that as little information as possible must be leaked to any party participating in the comparison. Leakage can happen at several points during a comparison. The secured inputs for the comparing party might leak some information about the original input, or the output might leak information about the inputs. In the latter case, results of several comparisons can be combined to infer information about the confidential input of the party under observation. Genomic sequences serve as a use-case, but the proposed solutions are more general and can be applied to the generic field of privacy-preserving comparison of sequences. The solution should be efficient such that performing a comparison yields runtimes linear in the length of the input sequences and thus producing acceptable costs for a typical use-case. To tackle the problem of efficient, privacy-preserving sequence comparisons, we propose a framework consisting of three main parts. a) The basic protocol presents an efficient sequence comparison algorithm, which transforms a sequence into a set representation, allowing to approximate distance measures over input sequences using distance measures over sets. The sets are then represented by an efficient data structure - the Bloom filter -, which allows evaluation of certain set operations without storing the actual elements of the possibly large set. This representation yields low distortion for comparing similar sequences. Operations upon the set representation are carried out using efficient, partially homomorphic cryptographic systems for data confidentiality of the inputs. The output can be adjusted to either return the actual approximated distance or the result of an in-range check of the approximated distance. b) Building upon this efficient basic protocol we introduce the first mechanism to reduce the success of inference attacks by detecting and rejecting similar queries in a privacy-preserving way. This is achieved by generating generalized commitments for inputs. This generalization is done by treating inputs as messages received from a noise channel, upon which error-correction from coding theory is applied. This way similar inputs are defined as inputs having a hamming distance of their generalized inputs below a certain predefined threshold. We present a protocol to perform a zero-knowledge proof to assess if the generalized input is indeed a generalization of the actual input. Furthermore, we generalize a very efficient inference attack on privacy-preserving sequence comparison protocols and use it to evaluate our inference-control mechanism. c) The third part of the framework lightens the computational load of the client taking part in the comparison protocol by presenting a compression mechanism for partially homomorphic cryptographic schemes. It reduces the transmission and storage overhead induced by the semantically secure homomorphic encryption schemes, as well as encryption latency. The compression is achieved by constructing an asymmetric stream cipher such that the generated ciphertext can be converted into a ciphertext of an associated homomorphic encryption scheme without revealing any information about the plaintext. This is the first compression scheme available for partially homomorphic encryption schemes. Compression of ciphertexts of fully homomorphic encryption schemes are several orders of magnitude slower at the conversion from the transmission ciphertext to the homomorphically encrypted ciphertext. Indeed our compression scheme achieves optimal conversion performance. It further allows to generate keystreams offline and thus supports offloading to trusted devices. This way transmission-, storage- and power-efficiency is improved. We give security proofs for all relevant parts of the proposed protocols and algorithms to evaluate their security. A performance evaluation of the core components demonstrates the practicability of our proposed solutions including a theoretical analysis and practical experiments to show the accuracy as well as efficiency of approximations and probabilistic algorithms. Several variations and configurations to detect similar inputs are studied during an in-depth discussion of the inference-control mechanism. A human mitochondrial genome database is used for the practical evaluation to compare genomic sequences and detect similar inputs as described by the use-case. In summary we show that it is indeed possible to construct an efficient and privacy-preserving (genomic) sequences comparison, while being able to control the amount of information that leaves the comparison. To the best of our knowledge we also contribute to the field by proposing the first efficient privacy-preserving inference detection and control mechanism, as well as the first ciphertext compression system for partially homomorphic cryptographic systems.
64

Sécurité assistée par ordinateur pour les primitives cryptgraphiques, les protocoles de vote électronique et les réseaux de capteurs sans fil.

Lafourcade, Pascal 06 November 2012 (has links) (PDF)
La sécurité est une des préoccupations principales de l'informatique moderne. De plus en plus de personnes utilisent un ordinateur pour des opérations sensibles comme pour des transferts bancaires, des achats sur internet, le payement des impôts ou même pour voter. La plupart de ces utilisateurs ne savent pas comment la sécurité est assurée, par conséquence ils font totalement confiance à leurs applications. Souvent ces applications utilisent des protocoles cryptographiques qui sont sujet à erreur, comme le montre la célèbre faille de sécurité découverte sur le protocole de Needham-Schroeder dix-sept ans après sa publication. Ces erreurs proviennent de plusieurs aspects : -- Les preuves de primitives cryptographiques peuvent contenir des erreurs. -- Les propriétés de sécurité ne sont pas bien spécifiées, par conséquence, il n'est pas facile d'en faire la preuve. -- Les hypothèses faites sur le modèle de l'intrus sont trop restrictives. Dans cette habilitation, nous présentons des méthodes formelles pour vérifier la sécurité selon ces trois aspects. Tout d'abord, nous construisons des logiques de Hoare afin de prouver la sécurité de primitives cryptographiques comme les chiffrements à clef publique, les modes de chiffrement asymétriques et les codes d'authentification de message ( Message authentication codes, MACs). Nous étudions aussi les protocoles de votes électroniques et les réseaux de capteus sans fil ( Wireless Sensor Networks, WSNs ). Dans ces deux domaines, nous analysons les propriétés de sécurité afin de les modéliser formellement. Ensuite nous développons des techniques appropriées afin de les vérifier.

Page generated in 0.0677 seconds