Spelling suggestions: "subject:"hopfield"" "subject:"ahopfield""
1 |
Pattern recognition using a generalised discrete Hopfield networkBrouwer, Roelof K. January 1995 (has links)
No description available.
|
2 |
Vibration design by means of structural modificationAkbar, Shahzad January 1998 (has links)
No description available.
|
3 |
Using Local Invariant in Occluded Object Recognition by Hopfield Neural NetworkTzeng, Chih-Hung 11 July 2003 (has links)
In our research, we proposed a novel invariant in 2-D image contour recognition based on Hopfield-Tank neural network. At first, we searched the feature points, the position of feature points where are included high curvature and corner on the contour. We used polygonal approximation to describe the image contour. There have two patterns we set, one is model pattern another is test pattern. The Hopfield-Tank network was employed to perform feature matching. In our results show that we can overcome the test pattern which consists of translation, rotation, scaling transformation and no matter single or occlusion pattern.
|
4 |
Estudo da transição de fase em uma rede de HopfieldSoares, Pierre Amorim 04 July 2017 (has links)
Submitted by Biblioteca do Instituto de Física (bif@ndc.uff.br) on 2017-07-04T18:39:14Z
No. of bitstreams: 1
Dissertaçao_PierreSoares (1).pdf: 729793 bytes, checksum: 12e5898e33b9602f7b327e003b58716b (MD5) / Made available in DSpace on 2017-07-04T18:39:14Z (GMT). No. of bitstreams: 1
Dissertaçao_PierreSoares (1).pdf: 729793 bytes, checksum: 12e5898e33b9602f7b327e003b58716b (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / O uso de redes neurais na solução de problemas é bastante atrativa pois suas características possibilitam desempenho superior ao de métodos convencionais [1]. Dentre os diferentes modelos de redes neurais, o modelo de Hopfield apresenta uma grande importância histórica nesse campo. Neste trabalho estudaremos o problema da capacidade de reconhecimento em uma rede de Hopfield utilizando técnicas de análise de tamanho finito. Vamos comparar os resultados obtidos por diferentes métodos com o intuito de obter o valor de [alfa c], o ponto onde a rede passa por uma transição de fase. Para isso utilizaremos simulações computacionais de redes de Hopfield. / The use of neural networks in problem solution is quite attractive because its characteristics enable superior performance than the conventional methods [1]. Among the different models of neural networks, the Hopfield model has a great historic importance in this field. In this work we will study the capacity problem of a Hopfield network by using finite-size analysis. We will compare the results obtained by different methods to find the value of [alpha c], the point where the network undergoes a phase transition. For this we will use computational simulations of Hopfield networks.
|
5 |
Estudo da transição de fase em uma rede de HopfieldSoares, Pierre Amorim 14 July 2017 (has links)
Submitted by Biblioteca do Instituto de Física (bif@ndc.uff.br) on 2017-07-14T18:59:48Z
No. of bitstreams: 1
Dissertaçao_PierreSoares (1).pdf: 729793 bytes, checksum: 12e5898e33b9602f7b327e003b58716b (MD5) / Made available in DSpace on 2017-07-14T18:59:48Z (GMT). No. of bitstreams: 1
Dissertaçao_PierreSoares (1).pdf: 729793 bytes, checksum: 12e5898e33b9602f7b327e003b58716b (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro / O uso de redes neurais na solução de problemas é bastante atrativa pois suas características possibilitam desempenho superior ao de métodos convencionais [1]. Dentre os diferentes modelos de redes neurais, o modelo de Hopfield apresenta uma grande importância histórica nesse campo. Neste trabalho estudaremos o problema da capacidade de reconhecimento em uma rede de Hopfield utilizando técnicas de análise de tamanho finito. Vamos comparar os resultados obtidos por diferentes métodos com o intuito de obter o valor de , o ponto onde a rede passa por uma transição de fase. Para isso utilizaremos simulações computacionais de redes de Hopfield. / The use of neural networks in problem solution is quite attractive because its characteristics enable superior performance than the conventional methods [1]. Among the different models of neural networks, the Hopfield model has a great historic importance in this field. In this work we will study the capacity problem of a Hopfield network by using finite-size analysis. We will compare the results obtained by different methods to find the value of , the point where the network undergoes a phase transition. For this we will use computational simulations of Hopfield networks.
|
6 |
Computational Complexity of Hopfield NetworksTseng, Hung-Li 08 1900 (has links)
There are three main results in this dissertation. They are PLS-completeness of discrete Hopfield network convergence with eight different restrictions, (degree 3, bipartite and degree 3, 8-neighbor mesh, dual of the knight's graph, hypercube, butterfly, cube-connected cycles and shuffle-exchange), exponential convergence behavior of discrete Hopfield network, and simulation of Turing machines by discrete Hopfield Network.
|
7 |
Analyse der Eigenschaften von assoziativen Speichern für die MustererkennungBässler, Martin. January 1998 (has links)
Stuttgart, Univ., Fakultät Elektrotechnik, Diplomarb., 1998.
|
8 |
Mathematical Aspects of Hopfield modelsNiederhauser, Beat. Unknown Date (has links)
Techn. University, Diss., 2000--Berlin.
|
9 |
A NEURAL METHOD OF COMPUTING OPTICAL FLOW BASED ON GEOMETRIC CONSTRAINTSKAIMAL, VINOD GOPALKRISHNA January 2002 (has links)
No description available.
|
10 |
CATASTROPHIC FORGETTING IN NEURAL NETWORKSRiesenberg, John R. January 2000 (has links)
No description available.
|
Page generated in 0.0297 seconds