• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 136
  • 31
  • 28
  • 17
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 303
  • 303
  • 183
  • 61
  • 54
  • 31
  • 29
  • 28
  • 27
  • 25
  • 22
  • 21
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Caracterização fisiológica e genética do transporte de arginina em Leishmania (Leishmania) amazonensis / Physiologic and genetic characterization of arginine transport in Leishmania (Leishmania) amazonensis

Martins, Emerson Augusto Castilho 06 April 2011 (has links)
Protozoários do gênero Leishmania são parasitas digenéticos, com uma fase no tubo digestório de um hospedeiro invertebrado (promastigota), e uma fase parasita intracelular de macrófagos (amastigotas). Estudar a demanda de L-arginina no parasita é interessante, uma vez que o aminoácido é indispensável para a sobrevida do parasita e, ao mesmo tempo, serve de substrato para a produção de óxido nítrico, principal composto microbicida dos macrófagos. O objetivo deste trabalho foi caracterizar o transporte de arginina em Leishmania (Leishmania) amazonensis do ponto de vista fisiológico e caracterizar o gene que codifica o transportador do aminoácido, bem como a regulação da sua expressão em resposta a diferentes condições biológicas. Para medir o influxo de L-arginina em fagolisossomos, utilizamos macrófagos J774 infectados com L. (L.) amazonensis e desenvolvemos uma metodologia com citometria de fluxo com sorting para a purificação da organela. Validamos microscopicamente a presença do parasita na organela por sua fluorescência, e avaliamos a integridade da membrana externa dessa com marcador de pH ácido. Paralelamente, o gene que codifica o transportador de arginina do parasita foi caracterizado. Foram encontradas duas cópias em tandem que produzem dois transcritos (5.1AAP3 e 4.7AAP3), cujas regiões 5\'UTR e 3\'UTR são diferentes. Por meio de PCR quantitativo em tempo real, avaliamos a expressão desses transcritos e verificamos que 5.1AAP3 é mais expressa ao longo do desenvolvimento do parasita, com um máximo em fase estacionária. A determinação da meia-vida dos mRNA das duas cópias indicou uma duração de 32,6±5,0min para o mRNA de 4.7AAP3, enquanto que o de 5.1AAP3 não apresentou decaimento até 180min do estudo, evidenciando que a estabilidade maior pode ser a razão de sua maior abundância. A submissão de parasitas à privação de arginina levou a aumento na tomada do aminoácido concomitante ao aumento do transcrito 5.1AAP3. Mutantes nulos de arginase submetidos à privação de arginina respondem com uma taxa de incorporação mais baixa em relação aos parasitas selvagens, e mantém a resposta à privação mesmo com os parasitas em fase estacionária, diferente do observado nos parasitas selvagens. Esse conjunto de resultados nos levou a sugerir que a expressão do transportador pode ser regulada pela estabilidade do mRNA, e que o pool de arginina interno ao parasita pode controlar, num mecanismo de retroalimentação negativo, a expressão de seu transportador. / Protozoan of genus Leishmania are digenetic parasites that present a stage in the life in insect gut (promastigotes) and an intracellular phase (amastigotes) inside vertebrate host macrophages. The study of L-arginine influx consists in an interesting matter, since the amino acid is used on NO production pathway (the main macrophage microbial pathway) but are also important for parasites survival. The aim of this work was to perform a genetic and physiological characterization of the arginine transport in Leishmania (Leishmania) amazonensis. To verify how does the arginine uptake occurs in the phagolisosomes, we used J774 macrophages infected with L. (L.) amazonensis to establish a flow cytometry sorting protocol to purify the organelle. Microscopic validation of organelle integrity was achieved by acidic pH marker treatment and detection of fluorescent parasites. The arginine transporter coding gene was characterized. We found two copies in tandem that produces two transcripts, named 5.1AAP3 and 4.7AAP3, with distinct 5\'UTR and 3\'UTR. By quantitative real time PCR we found that 5.1AAP3 mRNA expression varies along parasite development. This copy was, also, more abundant than 4.7AAP3 mRNA. This last mRNA showed a half-life of 32.6±5.0 min, while the 5.1AAP3 mRNA did not decay until 180min. As response to arginine starvation, wild type parasites increase the uptake of arginine, as well as the abundance of 5.1AAP3 mRNA. Arginase null parasites starvation responses showed lower arginine uptake rates compared to wild type responses. Unlike wild type, the null mutants also respond to starvation in stationary phase. This data set allow us to propose that arginine internal pool can downregulate its transporter expression in a feed-back mechanism.
152

The Effect of Dwarf Mistletoe (Arceuthobium americanum) Upon a Portion of the Carbon Budget of Lodgepole Pine (Pinus contorta)

Broshot, Nancy Ellen 01 January 1982 (has links)
Arceuthobium americanum is a vascular plant which is parasitic upon Pinus contorta var murrayana. Its documented effects include reductions in host growth, vigor and wood quality. The specific physiological changes that occur in the host are, for the most part, unknown.
153

Parasites, ploidy, and sex: implications for gene expression and adaptive molecular evolution in Potamopyrgus antipodarum

Bankers, Laura 01 August 2017 (has links)
The trajectory of evolutionary adaptation can be influenced both by the interactions of organisms with their environments as well as by the biological characteristics of the organisms themselves. My dissertation research uses the New Zealand freshwater snail Potamopyrgus antipodarum to 1) gain important insight into how coevolutionary interactions between hosts and parasites influence patterns of gene expression and genetic differentiation of hosts and, 2) evaluate how reproductive mode, and ploidy level affect patterns of adaptive molecular evolution. Coevolutionary interactions between hosts and parasites are a primary source of strong natural selection that can lead to rapid evolutionary change. Here, I used evaluation of patterns of gene expression and genetic differentiation to take critical steps towards characterizing the genomic basis of coevolutionary interactions between P. antipodarum and Microphallus livelyi. I found that M. livelyi-infected P. antipodarum exhibit systematic downregulation of genes relative to uninfected P. antipodarum. The specific genes involved in response to parasites differ markedly across lakes, consistent with population-specific host-parasite interactions leading to population-specific evolutionary trajectories. I also identified a set of rapidly evolving loci that represent promising candidates for targets of parasite-mediated selection across lakes as well as within each lake population. These results constitute the first genomic evidence for population-specific responses to coevolving infection in the P. antipodarum-M. livelyi interaction and provide new insights into the genomic basis of coevolutionary interactions in nature. I also generated and characterized the first transcriptomic resources for Microphallus parasites collected from two species of Potamopyrgus snails (P. antipodarum and P. estuarinus). These data both revealed that these parasites appear to represent distinct genetic lineages, which is interesting in light of the tight coevolutionary interactions between P. antipodarum and M. livelyi, and lay the groundwork for future research. Polyploidy has the potential to facilitate adaptive evolution by providing redundant genome copies that are free to evolve new functions. By contrast, asexuality, with which polyploidy is often associated, is expected to restrict adaptive evolution by decreasing the efficacy of natural selection and access to new genetic variation. I evaluated whether and how ploidy level and reproductive mode influence patterns of adaptive molecular evolution in P. antipodarum to assess 1) the potential evolutionary genomic benefits of recent polyploidy, and 2) how patterns of adaptive molecular evolution in asexuals are influenced by polyploidy. I compared patterns of positive selection in 60 genes across 27 P. antipodarum lineages (10 diploid sexuals, 12 triploid asexuals, 5 tetraploid asexuals) and a diploid sexual outgroup, Potamopyrgus estuarinus. I found little evidence that ploidy level and/or reproductive mode influence patterns of positive selection in P. antipodarum. Even so, this study provides initial steps in evaluating whether ploidy level and reproductive mode influence patterns of adaptive molecular evolution. Taken together, my dissertation work contributes new insights to the field of host-parasite coevolutionary interactions and will inform future studies into how ploidy level and reproductive mode influence patterns of adaptive molecular evolution.
154

The molecular basis for the resistance of Fasciola hepatica to cellular cytotoxicity

Prowse, Rhoda, 1975- January 2003 (has links)
Abstract not available
155

Interspecific and intraspecific interactions of trematodes parasitising the New Zealand cockle Austrovenus stutchburyi

Leung, Tommy Ling Fong, n/a January 2008 (has links)
Most organisms are rarely infected with just a single species of parasite and are usually simultaneously infected with a range of species. Thus, the parasite fauna of a host represents an entire community composed of multiple individuals from many different species. In nature, it is within the host that parasites can encounter conspecifics and individuals from other species. As in any ecosystem, while such interactions between parasites can be antagonistic due to competition or conflicting interests, association between different species can also be beneficial. In this thesis, I investigated patterns of associations between parasites in the New Zealand cockle Austrovenus stutchburyi through a combination of descriptive and experimental studies employing both standard ecological field techniques and molecular biology methods. It was found that the presence and infection intensity of various parasites species are not independent of each other. Among cockles, an association was found between two trematode taxa, i.e. between the infection intensity by foot-encysting echinostomes and the metacercariae of Gymnophallus sp. It was also found that the presence of the parasitic copepod Pseudomyicola spinosus was associated with greater infection intensity by the echinostomes but not Gymnophallus sp. While it was postulated that the positive association between the echinostomes and Gymnophallus sp. was due to the latter�s preference to infect cockles that are stranded on the sediment surface as a result of heavy echinostome metacercariae burden in their foot, a field experiment found that Gymnophallus cercariae did not preferentially infect cockles that have been forced to remain above the sediment surface as opposed to those that were forced to remain buried. Meanwhile, the two species of echinostomes known to encyst in the cockle�s foot, Acanthoparyphium sp. and Curtuteria australis, were found to represent cryptic species complexes. The presence of such cryptic species means that it is possible that some potential interspecific interactions are overlooked. A study of the population structure of Gymnophallus sp. found that each cockle contains multiple genetically distinct individuals and that clonal individuals rarely co-occur in the same cockle. This adds to the growing body of evidence suggesting that in addition to acting as a means of reaching the definitive host, the second intermediate host also acts to promote genetic diversity by accumulating cercariae shed by multiple first intermediate hosts in the environment. An experimental infection study conducted with Curtuteria australis cercariae deriving from singly-infected first intermediate hosts revealed that different clonal lineages varied with respect to their contribution to host manipulation. It was found that while certain lineages have a preference for host manipulation, others tend to adopt a "hitch-hiker"-type life history strategy. However, this genetic predisposition was also found to be a phenotypically plastic trait, as the presence of a higher number of manipulators seems to encourage newly-arrived cercariae to become manipulators, regardless of clonal lineage. This thesis provides evidence that patterns of interactions can affect various aspects of parasite life history. Apart from host condition, parasites can also be affected by other parasites. Studying the dynamics of mixed infections can provide informative insights for evolutionary and ecological research.
156

The distribution and abundance of nematodes (especially the plant parasites) in the arid region of South Australia / by J.M. Nobbs

Nobbs, J. M. (Jacqueline Mary) January 1987 (has links)
Includes bibliography / ii, 84 leaves, [7] leaves of plates : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Pathology, 1987
157

The role of polymorphonuclear cells in immunity to Nematospiroides dubius infections in mice / by Irmeli Penttila

Penttila, Irmeli January 1984 (has links)
Bibliography: leaves 113-128 / xii, 128, [63] leaves, [6] leaves of plates : ill ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Microbiology and Immunology, 1984
158

Mechanism of tumour resistance in salmonella-immunized mice

La Posta, Vincent J. (Vincent James) January 1983 (has links) (PDF)
Bibliography: leaves 218-251.
159

Factors involved in immunity to Nematospiroides dubius infections in mice

Desakorn, Varunee. January 1983 (has links) (PDF)
Bibliography: leaves 111-137.
160

The molecular mechanism of immune evasion by the eggs and larvae of the Endoparasitoid Venturia canescens in its host, Ephestia kühniella

Kinuthia, Wanja. January 1996 (has links) (PDF)
Bibliography: leaves 82-111. This thesis analyses the molecular composition of the surface components of the Endoparasitoid "Venturia canescens" using serological methods and specific sugar-binding lectins as diagnostic tools. The data reveals that the protective layer consists of at least two parts: a mucin-like glycoprotein and additional components from the wasp calyx fluid and the host hemolymph. The study suggests that the wasp larval cuticle is protected in a similar fashion to the egg chorion, except that the calyx-specific VLPs are probably replaced on the larval cuticle by host hemolymph proteins. The findings suggest that the mechanism of passive immune evasion could emerge during the evolution of the wasp-host interactions. The implication is that structurally conserved components may have similar functions in the parasitic and non parasitic species and could constitute a useful pre-adaptations for an endoparasitoid lifestyle.

Page generated in 0.0595 seconds