• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 41
  • 15
  • 6
  • 6
  • 3
  • 1
  • Tagged with
  • 178
  • 178
  • 84
  • 78
  • 44
  • 40
  • 30
  • 24
  • 20
  • 19
  • 19
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Evaluating the Influence of Abiotic and Biotic Environmental Characteristics in an Amphibian Disease System

McQuigg, Jessica L. 13 July 2022 (has links)
No description available.
62

The Role of Fibrinogen as a Modifier of Host Defense and Bacterial Virulence in Staphylococcus aureus Infection

Negrón, Oscar 24 May 2022 (has links)
No description available.
63

An Infection Model for Examining the Effects of Gender and Diabetic State on Proinflammatory Cytokine Secretion by Phagocytic Cells in Response to Infection with Burkholderia pseudomallei

Dickey, Laura L. 23 April 2007 (has links) (PDF)
Burkholderia pseudomallei is an opportunistic soil pathogen that causes melioidosis, a life-threatening human disease prevalent in Southeast Asia, northern Australia, the Middle East, Africa, and South America. The organism also causes disease in plants and animals. Persons with severe melioidosis usually die of septicemia. Relatively little is known regarding the virulence mechanisms of B. pseudomallei; however, several putative virulence determinants have been identified. The organism is able to invade and replicate within phagocytic cells and is particularly pathogenic in males with diabetes mellitus. B. thailandensis is closely related to B. pseudomallei, but is not pathogenic. This study examines various in vitro monocyte / macrophage infection models used to study innate immune responses to B. pseudomallei. Several monocyte and macrophage models showed little or no significant differences between proinflammatory cytokines secreted in response to infection with B. pseudomallei and B. thailandensis. Peripheral blood monocytes from diabetic males produced lower normalized levels of proinflammatory cytokines IL-1α, IL-1β, IL-6, and IL-8 than monocytes from healthy males in response to infection with B. pseudomallei, B. thailandensis, and E. coli. Surprisingly, normalized levels of secreted IL-1β from B. pseudomallei-infected monocytes from diabetic females were higher than levels from healthy females. The results revealed a significant interactive effect of gender and diabetic state on peripheral blood monocyte secretion of IL-1β (p = 0.0370) and IL-8 (p = 0.0390), as well as a significant interactive effect of diabetic state and type of infectious agent on peripheral blood monocyte secretion of IL-1α (p=0.0210) and IL-6 (p=0.0204). These results may help explain why diabetic males are unusually susceptible to infection with B. pseudomallei.
64

Host and Bacterial Determinants of Staphylococcus aureus Nasal Colonization in Humans

Muthukrishnan, Gowrishankar 01 January 2014 (has links)
Staphylococcus aureus (SA), an opportunistic pathogen colonizing the anterior nares in approximately 30% of the human population, causes severe hospital-associated and community-acquired infections. SA nasal carriage plays a critical role in the pathogenesis of staphylococcal infections and SA eradication from the nares has proven to be effective in reducing endogenous infections. To understand SA nasal colonization and its relation with consequent disease, assessment of nasal carriage dynamics among a diverse population and determining factors responsible for SA nasal carriage have become major imperatives. Here, we report on an extensive longitudinal monitoring of SA nasal carriage in 109 healthy individuals over a period of up to three years to assess nasal carriage dynamics. Phylogenetic analyses of SA housekeeping genes and hypervariable virulence genes revealed that not only were SA strains colonizing intermittent and persistent nasal carriers genetically similar, but no preferential colonization of specific SA strains in these carriers was observed over time. These results indicated that other non-SA factors could be involved in determining specific carriage states. Therefore, to elucidate host responses during SA nasal carriage, we performed human SA nasal recolonization in a subset of SA nasal carriers within our cohort. In these studies, SA colonization levels were determined, and nasal secretions were collected and analyzed for host immune factors responsible for SA nasal carriage. Interestingly, we observed that stimulation of host immune responses lead to clearance of SA while sustained SA colonization was observed in hosts that did not mount a response during carriage. Further, analysis of nasal secretions from hosts revealed that proinflammatory cytokines and chemokines were significantly induced during SA nasal clearance suggesting that innate immune effectors influence carriage. SA utilizes a repertoire of surface and secreted proteins to evade host immune response and successfully colonize the nose. Analysis of the most abundant immunoevasive proteins in the exoproteome of SA nasal carrier strains revealed that expression levels of Staphylococcal protein A (SPA) produced by SA nasal carrier strains in vitro corresponded to the level of persistence of SA in the human nose. To determine if SPA is involved in modulating the host's response to SA colonization, a subset of participants in our cohort was nasally recolonized with equal concentrations of both wild-type (WT) and spa-disrupted (?spa) autologous strains of SA. Interestingly, ?spa strains were eliminated from the nares significantly faster than WT when the host mounted an immune response, suggesting that the immunoevasive role of SPA is a determinant of carriage persistence. Collectively, this report augments our understanding of SA nasal carriage dynamics, in addition to identifying important host and microbial determinants that influence SA nasal colonization in humans. Better understanding of this phenomenon can lead to improved preventative strategies to thwart carriage-associated SA infections.
65

Host-Pathogen Interactions Promoting Pathogen Survival and Potentiating Disease Severity & Morbidity in Invasive Group A Streptococcal Necrotizing Soft Tissue Infections

Chella Krishnan, Karthickeyan January 2015 (has links)
No description available.
66

The Influence of Environmental Factors on Responses on Amphibian Hosts Across Life Stages to an Infectious Fungal Pathogen

Rumschlag, Samantha Leigh 19 July 2016 (has links)
No description available.
67

Interaction of <i>Acinetobacter baumannii</i> with abiotic and biotic environments

Ohneck, Emily Jean 21 November 2016 (has links)
No description available.
68

The Host-pathogen Relationship in Rickettsia: Epidemiological Analysis of RMSF in Ohio and a Comparative Molecular Analysis of Four vir genes

Carmichael, Jennifer Rose 19 March 2008 (has links)
No description available.
69

Decoding novel virulence strategies in Fusobacterium invasion and survival

Nguyen, Tam 08 June 2022 (has links)
Fusobacterium nucleatum is an anaerobic, Gram-negative, oral bacterium that disseminates from the mouth, and contributes to preterm birth, tissue infections, and acceleration of multiple cancers including colorectal and pancreatic. It is well-established that most Fusobacterium species exhibit genetic recalcitrance, which has led to hindrance in the understanding of their biology and molecular pathogenesis. Though the association of Fusobacterium in diseases is well-established, the majority of our experimental work stems from the strain F. nucleatum ATCC 23726 because it is genetically tractable. Here, in this dissertation, we show that we are able to enhance our existing molecular tools for genome editing to introduce the first mutants in a clinically relevant strain, F. nucleatum ATCC 25586, a feat that was never accomplished in decades of trying. Furthermore, we created a deletion library of genes predicted to be involved in host cellular invasion and survival. In this work, we identified a novel small adhesin, FadA2, that played a significant role in the invasive ability of F. nucleatum ATCC 25586 to colorectal cancer cells. This dissertation also sheds the first insight into the roles of the type 5a autotransporters. Using a deletion library of genes encoding for the type 5a autotransporter proteins in F. nucleatum ATCC 23726, we systemically characterized altogether 12 type 5a proteins with a focus on the invasion of colorectal cancer cells. Most notably, we found that a wide assortment of type 5a proteins contributing to binding and invasion of F. nucleatum to HCT116 cancer cells. Furthermore, we identified that RadD was not directly involved in inducing secretions of the cytokines IL-8 and CXCL1 while confirmed the specific association of Fap2 in bacterial-induced cytokine secretion. Thus, our findings provided the first comparative and functional analysis of Fusobacterium type 5a autotransporter proteins in colorectal cancer cells which will be crucial to the understanding of Fusobacterium involvement in cancer progression. Finally, this dissertation reported on the first ever observation on the survival strategy of Fusobacterium inside the host cells. We uncovered a novel protein that contributed to enhanced survival of Fusobacterium residing in colorectal cancer cells. This work undoubtedly helps expand the current Fusobacterium genetic toolkit to study proteins and mechanisms relevant to Fusobacterium-accelerated diseases. By identifying and characterizing novel virulence strategies that Fusobacterium can take advantage of, we can increase our comprehension on this opportunistic microbe while devising innovative therapeutic treatments. / Doctor of Philosophy / Fusobacterium, a member of the microbial community in our mouth, has been a captivating study target due to its association with human health and diseases. By nature, Fusobacterium lives in oxygen-free pockets between our teeth and gumline in which this organism has been correlated with a multitude of complications and diseases including periodontitis, inflammatory bowel disease, preterm birth, and most importantly colorectal cancer. Though the connection to human health is established, we still have to learn more about the mechanisms utilized by Fusobacterium to exacerbate diseases. This challenge is mainly hindered by the lack of efficient tools and resources to systematically investigate the relationship between the bacterium and its human host. Therefore, the work in this dissertation focuses on expanding the existing molecular toolkit to study clinically relevant Fusobacterium strain, which provides the power and convenience to discover novel mechanisms that Fusobacterium can take advantage of to be a successful pathogen. Accordingly, we first enhanced our ability to work with a wider range of Fusobacterium species. We successfully introduced exogenous genetic materials into a clinical strain of Fusobacterium, Fusobacterium nucleatum ATCC 25586. This breakthrough was built on the success of our current toolkit to make genetic modifications to a sister strain, Fusobacterium nucleatum ATCC 23726. With this newfound capacity to modify F. nucleatum ATCC 25586, we have described the importance of a novel protein aiding in the invasion of Fusobacterium to colorectal cancer. Furthermore, we have determined that certain proteins within the fusobacterial type 5a protein family can play a key role in governing binding and invasion of colorectal cancer cells in this study. Concurrently, for the first time, we provided the snapshot of a small protein and its role in fusobacterial long-term survival inside its targeted host cells. Altogether, the findings in this dissertation will bring forth an innovative framework to better the comprehension of current Fusobacterium-induced disease implications, while exploring alternative treatments for enhanced patient health.
70

Expanding the Genetic Toolkit of Fusobacterium nucleatum by Generation of Fully-Sequenced Genomes and Discovery of Natural Competence

Sanders, Blake Edward 21 May 2020 (has links)
The microbiome has long been an alluring target to study and recent advancements in microbial detection and omics-technologies has further revolutionized our view of how human diseases are impacted by the microbiome. A member of the human microbiome that has garnered such attention is Fusobacterium nucleatum, a Gram-negative, anaerobic bacterium, that normally inhabits the human oral cavity. Interestingly, F. nucleatum is highly invasive into surrounding cells and tissues of the periodontal pocket (below the gymline) and capable of disseminating throughout the entire body. Because of this, F. nucleatum is associated with a wide variety of diseases, most recently and strikingly, colorectal cancer. Despite the pathogenic potential of F. nucleatum, there is limited knowledge about the molecular mechanisms contributing to the invasive nature and virulence of this oral bacterium. This gap in knowledge can be attributed to the absence of genetic tools and resources to investigate and study host-pathogen interactions of Fusobacterium. Progress in dissecting the role of Fusobacterium in disease has been hindered by a lack of fully sequenced and annotated genomes, and the absence of genetic systems to generate target virulence gene deletions to validate mechanisms contributing to host-pathogen interactions. Breakthroughs discussed in this work focus on developing and expanding the genetic toolkits and resources available for studying F. nucleatum interactions in relation to human health and disease. As part of this work, herein, I introduce FusoPortal, an online database of fully sequenced and annotated Fusobacterium genomes, that enabled the bioinformatic annotation and correction of large protein encoding reading frames, that were previously misannotated. This database features a custom basic local alignment search tool (BLAST) server that establishes this resource as a powerful tool for identifying potential virulence factors that contribute to Fusobacterium pathogenesis. Most notably, FusoPortal facilitated my discovery of DNA uptake machinery involved in natural competence and transformation in F. nucleatum. This work is the first to characterize natural competence in a Fusobacterium species, and also enables the expansion of Fusobacterium genetics utilizing the newly found competence mechanism. The findings within this dissertation encompass a paradigm shift in efficient and robust tools to study F. nucleatum biology and pathogenesis. By creating tools for identifying key genes, proteins, and mechanisms involved in Fusobacterium induced or accelerated diseases, there is the potential to accelerate the development of novel therapeutics and vaccines against the emerging 'oncomicrobe' Fusobacterium nucleatum. / Doctor of Philosophy / The trillions of microbes living on or in the human body, collectively called the microbiome, has long been a captivating target to study and understand its role in human health and disease. Recent advances in technology have revolutionized our view of the individual components of the human microbiome, which has led to a renaissance in understanding how specific bacterial species could be used to modulate human health and fight a myriad of diseases. A member of this microbiome that has garnered such attention is Fusobacterium nucleatum, a bacterium that lives in oxygen free pockets along the gumline in the human mouth. A striking feature of F. nucleatum is its ability to invade surrounding tissue, driving bacterial spread throughout the entire body. This bacterium is associated with a wide variety of diseases, most importantly colon cancer. Although F. nucleatum is implicated in these diseases, we still know very little about the mechanisms used by Fusobacterium to promote disease. This roadblock in studying F. nucleatum can largely be attributed to the lack of molecular tools and resources to investigate and study the interactions between the bacteria and its human host. Therefore, research discussed in this work revolved around developing and resources available for studying F. nucleatum interactions in relation to human health and disease. One such resource developed was FusoPortal, an online website with fully sequenced and annotated genomes. This resource was critical in the bioinformatic annotation and correction of large proteins that were previously misannotated. This website features a tool that allows one to search this complete set of genes for a specific sequence establishing this resource as an important tool for identifying key genes and mechanisms that could influence F. nucleatum ability to infect and cause disease. Most notably, FusoPortal provided the means to discover a bacterial system that can import DNA and integrate it into the bacterial genome, a process called natural competence. This work is the first to characterize natural competence in a Fusobacterium species, and has allowed me to utilize the newly found natural competence mechanism to enhance Fusobacterium genetics. In summary, the findings within this dissertation brings about a new horizon for studying F. nucleatum biology, thereby, providing the framework for creating future therapeutic strategies to treat diseases including colorectal cancer.

Page generated in 0.0329 seconds