Spelling suggestions: "subject:"tot meet extrusion"" "subject:"tot meat extrusion""
1 |
Mechanism for Polymorphic Transformation of Artemisinin during High Temperature ExtrusionKulkarni, Chaitrali S., Kelly, Adrian L., Kendrick, John, Gough, Tim, Paradkar, Anant R January 2013 (has links)
No / A novel, green, and continuous method for solid-state polymorphic transformation of artemisinin by high temperature extrusion has recently been demonstrated. This communication describes attempts to understand the mechanisms causing phase transformation during the extrusion process. Polymorphic transformation was investigated using hot stage microscopy and a model shear cell. At high temperature, phase transformation from orthorhombic to the triclinic crystals was observed through a vapor phase. Under mechanical stress, the crystalline structure was disrupted continuously, exposing new surfaces and accelerating the transformation process.
|
2 |
Formes galéniques polymériques avec cinétiques de libération améliorée pour le kétoprofène et le fénofibrate / Polymeric dosage forms with improved release kinetics for ketoprofen and fenofibrateGué, Emilie 11 December 2013 (has links)
L’amélioration de la solubilité des principes actifs peu solubles est devenue l’un des principaux challenges de l’industrie pharmaceutique. Bien que présentant une structure chimique potentiellement idéale pour interagir avec la cible, elles échouent dans l’efficacité in vivo : après administration, elles ne peuvent se dissoudre dans les milieux aqueux biologiques et par conséquent ne peuvent être transportées sur leur site d’action pour atteindre la concentration efficace, amenant à un échec thérapeutique. De nombreuses stratégies très intéressantes ont été proposées pour surmonter ce sérieux obstacle.Les dispersions solides sont étudiées depuis plus de 40 ans et ont conduit à de très nombreuses publications mais jusqu’à aujourd’hui peu de produits ont été commercialisés principalement pour des raisons de stabilité physico-chimique. Celles-ci ont pour but de présenter le principe actif sous sa forme amorphe : cette dernière présentant un état d’énergie plus élevé et par conséquent une solubilisation facilitée. Dans le même temps, le système doit rester stable durant le stockage, ainsi la recristallisation ou tout autre changement entraînant une modification du profil de libération doivent être évités. Différentes techniques de production peuvent être utilisées pour préparer ce genre de systèmes polymériques tels que l’extrusion en phase chauffante ou l’atomisation-séchage. Le principal objectif de ce travail a été d’améliorer la solubilité des principes actifs peu solubles par formation de dispersions solides utilisant les deux techniques les plus utilisées : l’extrusion en phase chauffante et l’atomisation-séchage. Dans cette étude, le kétoprofène a été incorporé dans des matrices polymériques hydrophiles pour augmenter sa solubilité apparente. Les deux techniques ont été employées et l’Eudragit® E a été considéré comme une matrice intéressante pour plusieurs raisons : c’est un polymère thermoplastique, offrant une stabilité thermique suffisante pour l’extrusion en phase chauffante, il se dissout rapidement en milieu acide et peut interagir avec les groupements acides de par ses nombreux azotes ternaires. Des mélanges binaires « principe actif – Eudragit®E » ainsi que des mélanges ternaires « principe actif – Eudragit®E - PVP », « principe actif – Eudragit®E - PVPVA », « principe actif – Eudragit®E - HPMC » ont été étudiés et caractérisés Les systèmes obtenus ont été caractérisés par macro/microscopie optique, microscopie électronique à balayage, diffraction laser, analyse calorimétrique différentielle modulée, diffraction des rayons X et l’étude du profil de libération in vitro en milieu acide (HCl 0.1M). Les libérations ont été intentionnellement réalisées en condition « non sink » afin d'évaluer le potentiel des formulations à produire des solutions sur-saturées et la durée de ces dernières. Tous les systèmes présentent un profil de libération du kétoprofène beaucoup plus rapide comparé au produit commercial et à la dissolution du principe actif pur. De plus, des solutions sur-saturées peuvent être obtenues et restent stables au moins 2 h. Cependant, en fonction des polymères utilisés, différents profils de libération ont été obtenus indiquant que l’utilisation de matrices polymériques pour l’accélération de la libération de principes actifs peu solubles peut être très complexe puisqu’elle n’est pas seulement influencée par la composition du système mais aussi potentiellement par leur structure interne et notamment par l’homogénéité/hétérogénéité de la distribution des excipients.[...]. / Poor aqueous solubility has become a property of numerous new drug candidates causing major concern. Despite a potentially ideal chemical structure allowing for interaction with the target, these substances fail to be effective in vivo: upon administration, they cannot dissolve sufficiently in the aqueous fluids of the body and, thus, cannot be transported to their site of action to reach therapeutically effective concentrations. Various interesting strategies have been proposed to overcome this crucial hurdle.Solid dispersions have been studied for more than 40 years and lead to numerous interesting research articles. However, today, only a few products have reached the market principally due to problems with the physico-chemical stability. The idea is to transform the crystalline raw material into a physical state having a greater energy in order to increase the driving force for drug dissolution. At the same time, the system should be stable during long term storage, thus, re-crystallization or other system changes, resulting in altered drug release rates, must be avoided. Different manufacturing techniques can be used to prepare such polymeric drug delivery systems, including hot-melt extrusion and spray-drying.The main objective of this work has been to improve drug solubility by forming solid dispersions using the two most employed techniques: hot-melt extrusion and spray-drying. In this study ketoprofen has been incorporated into hydrophilic polymeric matrices to increase its apparent aqueous solubility. Both techniques have been applied and Eudragit® E has been considered to be an interesting matrix former in this case, as it is thermoplastic, provides sufficient thermal stability for hot-melt extrusion, rapidly dissolves at acidic pH and can interact with acidic drugs due to its multiple tertiary ammonium groups. Binary “drug-Eudragit®E” as well as ternary “drug-Eudragit®E-PVP”, “drug-Eudragit®E-PVPVA”, “drug-Eudragit®E-HPMC” combinations were investigated and characterized using X-ray diffraction, mDSC, SEM, optical macro/microscopy, and drug release measurements in 0.1 M HCl before and after storage. Drug release has been intentionally monitored under non-sink conditions, in order to evaluate the potential of the formulations to provide super-saturated solutions and the life-time of the latter. In all cases ketoprofen release was much faster compared to a commercially available product and the dissolution of the drug powder (as received). More important, super-saturated solutions could have been obtained, which were stable for at least 2 h. [...]
|
3 |
Advanced formulation and processing technologies in the oral delivery of poorly water-soluble drugsLang, Bo, 1986- 22 September 2014 (has links)
With the advance of combinational chemistry and high throughput screening, an increasing number of pharmacologically active compounds have been discovered and developed. A significant proportion of those drug candidates are poorly water-soluble, thereby exhibiting limited absorption profiles after oral administration. Therefore, advanced formulation and processing technologies are demanded in order to overcome the biopharmaceutical limits of poorly water-soluble drugs. A number of pharmaceutical technologies have been investigated to address the solubility issue, such as particle size reduction, salt formation, lipid-based formulation, and solubilization. Within the scope of this dissertation, two of the pharmaceutical technologies were investigated names thin film freezing and hot-melt extrusion. The overall goal of the research was to improve the oral bioavailability of poorly water-soluble drugs by producing amorphous solid dispersion systems with enhanced wetting, dissolution, and supersaturation properties. In Chapter 1, the pharmaceutical applications of hot-melt extrusion technology was reviewed. The formulation and process development of hot-melt extrusion was discussed. In Chapter 2, we investigated the use of thin film freezing technology combined with template emulsion system to improve the dissolution and wetting properties of itraconazole (ITZ). The effects of formulation variables (i.e., the selection of polymeric excipients and surfactants) and process variables (i.e., template emulsion system versus cosolvent system) were studied. The physic-chemical properties and dissolution properties of thin film freezing compositions were characterized extensively. In Chapter 3 and Chapter 4, we investigated hot-melt extrusion technology for producing amorphous solid dispersion systems and improving the dissolution and absorption of ITZ. Formulation variables (i.e., the selection of hydrophilic additives, the selection of polymeric carriers) and process variables (i.e., the screw configuration of hot-melt extrusion systems) were investigated in order to optimize the performance of ITZ amorphous solid dispersions. The effects of formulation and process variables on the properties of hot-melt extrusion compositions were investigated. In vivo studies revealed that the oral administration of advanced ITZ amorphous solid dispersion formulations rendered enhanced oral bioavailability of the drug in the rat model. Results indicated that novel formulation and processing technologies are viable approaches for enhancing the oral absorption of poorly water-soluble drugs. / text
|
4 |
Novel nicotinamide skin-adhesive hot melt extrudates for treatment of acneNasr, M., Karandikar, H., Abdel-Aziz, R.T.A., Moftah, N., Paradkar, Anant R 30 November 2018 (has links)
No / Hot melt extrusion is a continuous process with wide industrial applicability. Till current date, there have been no reports on the formulation of extrudates for topical treatment of dermatological diseases.
The aim of the present work was to prepare and characterize medicated hot melt extrudates based on Soluplus polymer and nicotinamide, and to explore their applicability in acne treatment. The extrudates were characterized using DSC, FTIR, XRD, and DVS. The extrudates were also tested for their skin adhesion potential, ability to deposit nicotinamide in different skin layers, and their clinical efficacy in acne patients.
The 10% nicotinamide extrudates exhibited amorphous nature which was reserved during storage, with no chemical interaction between nicotinamide and Soluplus. Upon contrasting the skin adhesion and drug deposition of extrudates and nicotinamide gel, it was evident that the extrudates displayed significantly higher adhesion and drug deposition reaching 4.8 folds, 5.3 folds, and 4.3 folds more in the stratum corneum, epidermis and dermis, respectively. Furthermore, the extrudates significantly reduced the total number of acne lesions in patients by 61.3% compared to 42.14% with the nicotinamide gel.
Soluplus extrudates are promising topical drug delivery means for the treatment of dermatological diseases.
|
5 |
Application of supercritical fluid technology to the pre-formulation and production of amorphous solid dispersionsPotter, Catherine January 2016 (has links)
No description available.
|
6 |
Preparação e caracterização físico-química de dispersões sólidas de flubendazol obtidas por extrusão a quente / Preparation and physico-chemical characterization of solid dispersions of flubendazole produced by hot melt extrusion.Assis, João Marcos Cabral de 30 November 2017 (has links)
O flubendazol (FB) é um agente anti-helmíntico benzimidazólico cuja potencialidade foi demonstrada para uso no tratamento da filariose linfática e da oncocercose em humanos. As formulações atualmente comercializadas, entretanto, atuam apenas em parasitas do trato gastrointestinal, uma vez que, praticamente, não são absorvidas por via oral em decorrência da baixa solubilidade do fármaco. Assim, observa-se a necessidade da busca de alternativas que melhorem a solubilidade do FB e viabilizem o desenvolvimento de formulações orais de efeito sistêmico. Uma das tecnologias que vem se destacando no mercado farmacêutico nas últimas décadas para a produção de dispersões sólidas amorfas para melhoria de solubilidade é a extrusão a quente; esta representa uma potencial solução para o problema apresentado, constituindo-se o objeto de estudo do presente trabalho. Para tal, foram selecionados os polímeros copovidona e HPMCAS LG, além dos adjuvantes HPC EF e estearato de magnésio. Inicialmente os componentes individuais e misturas binárias de FB e excipientes foram caracterizados por DSC e TG, mostrando-se compatíveis com o fármaco em questão. Misturas entre o fármaco, polímero e adjuvantes para a extrusão a quente foram planejadas por delineamento experimental e o processo conduzido em extrusora dupla rosca. Parâmetros como a temperatura das zonas de aquecimento, velocidade de alimentação e das roscas da extrusora foram mantidos constantes durante todo o processo, de modo a avaliar o impacto de cada material e sua porcentagem na fórmula. A copovidona mostrou-se altamente extrusável, sendo que o HPMCAS LG, para os parâmetros utilizados, não permitiu a obtenção de extrusados com o FB. Todos os testes feitos com a copovidona, exceto o com alta carga de FB, pois nesta condição não foi possível obter extrusados, foram avaliados por meio de DSC e difratometria de raios-X pelo método do pó, durante um ano em temperatura ambiente e, após 30 dias, em condição de estabilidade acelerada (40°C/75% U.R.), com resultados positivos relativos à amorfização do fármaco. Adicionalmente, ensaios de dissolução foram realizados em meio HCl pH 1.2 indicaram melhoria expressiva da solubilidade, porém de forma distinta para cada formulação proposta. Desta forma, o processo de extrusão a quente com a copovidona mostrou-se uma alternativa viável e eficiente para promover o aumento da dissolução do FB, por meio da obtenção de uma dispersão sólida amorfa estável. / Flubendazole (FB) is a benzimidazole anthelmintic agent that has recently demonstrated effectiveness for the treatment of lymphatic filariasis and onchocerciasis in humans. However, the formulations currently commercialized act only on parasites of the gastrointestinal tract, since they are not orally absorbed due to the poor drug solubility. Thus, there is a need to seek alternatives to improve FB solubility and enable the development of oral formulations with systemic effect. Hot melt extrusion (HME) is a technology that has been outstanding on the pharmaceutical market in recent decades aiming to produce amorphous solid dispersion for solubility enhancement. Aside from that, this technique can be considered a potential alternative to the presented drug. Therefore, the purpose of this study was to prepare a solid dispersion using copovidone and HPMCAS LG as the polymers and HPC EF and magnesium stearate as the adjuvants. Initially, the individual components and drug/excipients binary mixtures were characterized by differential scanning calorimetry (DSC) and thermogravimetry (DTG) to evaluate the thermal behavior and compatibility with FB. Through these tests, it was possible to verify that the polymers and adjuvants chosen were compatible with FB. Then, the mixtures of drug, polymer and adjuvant were designed statistically and the process was performed in a twin-screw extruder; the temperature of the heating zones, screw speed, and feed screw speed were kept constant for all tests to evaluate the impact of each material and its percentage on getting an achievable solid dispersion. Copovidone was highly extrudable and the HPMCAS LG, for the determined parameters, did not allow obtaining extrudates for FB. The extruded materials were evaluated by DSC and X-ray powder diffraction and presented positive results concerning amorphization of the drug, except the tests with high drug loading. Stability tests were performed at room temperature for one year and accelerated condition (40° C/75% RH) for 30 days showing, for almost all tests, optimistic results regarding keeping FB amorphous. In order to evaluate the improvement of the solubility of the drug, a comparative dissolution test of the extrudates and the pure FB was carried out at HCl pH 1.2. At different levels, all extrudates showed expressive improvement on the solubility when compared to pure FB. In conclusion, HME process can be considered a viable alternative to obtain stable solid amorphous dispersion of FB and copovidone.
|
7 |
Preparação e caracterização físico-química de dispersões sólidas de flubendazol obtidas por extrusão a quente / Preparation and physico-chemical characterization of solid dispersions of flubendazole produced by hot melt extrusion.João Marcos Cabral de Assis 30 November 2017 (has links)
O flubendazol (FB) é um agente anti-helmíntico benzimidazólico cuja potencialidade foi demonstrada para uso no tratamento da filariose linfática e da oncocercose em humanos. As formulações atualmente comercializadas, entretanto, atuam apenas em parasitas do trato gastrointestinal, uma vez que, praticamente, não são absorvidas por via oral em decorrência da baixa solubilidade do fármaco. Assim, observa-se a necessidade da busca de alternativas que melhorem a solubilidade do FB e viabilizem o desenvolvimento de formulações orais de efeito sistêmico. Uma das tecnologias que vem se destacando no mercado farmacêutico nas últimas décadas para a produção de dispersões sólidas amorfas para melhoria de solubilidade é a extrusão a quente; esta representa uma potencial solução para o problema apresentado, constituindo-se o objeto de estudo do presente trabalho. Para tal, foram selecionados os polímeros copovidona e HPMCAS LG, além dos adjuvantes HPC EF e estearato de magnésio. Inicialmente os componentes individuais e misturas binárias de FB e excipientes foram caracterizados por DSC e TG, mostrando-se compatíveis com o fármaco em questão. Misturas entre o fármaco, polímero e adjuvantes para a extrusão a quente foram planejadas por delineamento experimental e o processo conduzido em extrusora dupla rosca. Parâmetros como a temperatura das zonas de aquecimento, velocidade de alimentação e das roscas da extrusora foram mantidos constantes durante todo o processo, de modo a avaliar o impacto de cada material e sua porcentagem na fórmula. A copovidona mostrou-se altamente extrusável, sendo que o HPMCAS LG, para os parâmetros utilizados, não permitiu a obtenção de extrusados com o FB. Todos os testes feitos com a copovidona, exceto o com alta carga de FB, pois nesta condição não foi possível obter extrusados, foram avaliados por meio de DSC e difratometria de raios-X pelo método do pó, durante um ano em temperatura ambiente e, após 30 dias, em condição de estabilidade acelerada (40°C/75% U.R.), com resultados positivos relativos à amorfização do fármaco. Adicionalmente, ensaios de dissolução foram realizados em meio HCl pH 1.2 indicaram melhoria expressiva da solubilidade, porém de forma distinta para cada formulação proposta. Desta forma, o processo de extrusão a quente com a copovidona mostrou-se uma alternativa viável e eficiente para promover o aumento da dissolução do FB, por meio da obtenção de uma dispersão sólida amorfa estável. / Flubendazole (FB) is a benzimidazole anthelmintic agent that has recently demonstrated effectiveness for the treatment of lymphatic filariasis and onchocerciasis in humans. However, the formulations currently commercialized act only on parasites of the gastrointestinal tract, since they are not orally absorbed due to the poor drug solubility. Thus, there is a need to seek alternatives to improve FB solubility and enable the development of oral formulations with systemic effect. Hot melt extrusion (HME) is a technology that has been outstanding on the pharmaceutical market in recent decades aiming to produce amorphous solid dispersion for solubility enhancement. Aside from that, this technique can be considered a potential alternative to the presented drug. Therefore, the purpose of this study was to prepare a solid dispersion using copovidone and HPMCAS LG as the polymers and HPC EF and magnesium stearate as the adjuvants. Initially, the individual components and drug/excipients binary mixtures were characterized by differential scanning calorimetry (DSC) and thermogravimetry (DTG) to evaluate the thermal behavior and compatibility with FB. Through these tests, it was possible to verify that the polymers and adjuvants chosen were compatible with FB. Then, the mixtures of drug, polymer and adjuvant were designed statistically and the process was performed in a twin-screw extruder; the temperature of the heating zones, screw speed, and feed screw speed were kept constant for all tests to evaluate the impact of each material and its percentage on getting an achievable solid dispersion. Copovidone was highly extrudable and the HPMCAS LG, for the determined parameters, did not allow obtaining extrudates for FB. The extruded materials were evaluated by DSC and X-ray powder diffraction and presented positive results concerning amorphization of the drug, except the tests with high drug loading. Stability tests were performed at room temperature for one year and accelerated condition (40° C/75% RH) for 30 days showing, for almost all tests, optimistic results regarding keeping FB amorphous. In order to evaluate the improvement of the solubility of the drug, a comparative dissolution test of the extrudates and the pure FB was carried out at HCl pH 1.2. At different levels, all extrudates showed expressive improvement on the solubility when compared to pure FB. In conclusion, HME process can be considered a viable alternative to obtain stable solid amorphous dispersion of FB and copovidone.
|
8 |
Formulation and processing technologies for dissolution enhancement of poorly water-soluble drugsHughey, Justin Roy 14 November 2013 (has links)
The number of newly developed chemical entities exhibiting poor water solubility has increased dramatically in recent years. In many cases this intrinsic property results in poor or erratic dissolution in biological fluids. Improving aqueous solubility of these compounds, even temporarily, can have a significant impact on in vivo performance. Single phase amorphous solid dispersions of a drug and polymer have emerged as a technique to not only increase the level of drug supersaturation but also maintain these levels for extended periods of time. Hot-melt extrusion (HME) has become the preferred processing technique to prepare systems such as these but has a number of limitations that prevent the successful formulation of many drug substances. Within this dissertation, the use of concentration enhancing polymers was investigated in parallel with a thorough evaluation of a novel fusion-based processing technique, KinetiSol® Dispersing (KSD), to prepare single phase amorphous solid dispersions that could not be successfully prepared by HME. Studies showed that the KSD technique is suitable for rendering thermally labile and high melting point drug substances amorphous through a combination of frictional and shearing energy. Compounds such as these were shown to degrade during HME processing due to relatively long residence times and low shear forces. Similarly, the KSD process was shown to successfully process solid dispersion compositions containing a high viscosity polymer with significantly lower levels of polymer degradation than obtained by HME processing. In the final study, KSD processing was used to prepare solid dispersions containing the hydrophilic polymer Soluplus[superscript TM] and methods were evaluated to formulate a tablet with rapid tablet disintegration characteristics, a requirement for sufficient dissolution enhancement. Combined, the studies demonstrated the effectiveness of combining proper polymer selection and formulation approaches with a suitable processing technique to form solid dispersion systems that provide rapid and extended durations of supersaturation. / text
|
9 |
Novel formulations and thermal processes for bioavailability enhancement of soluble and poorly soluble drugsKeen, Justin Martin 03 March 2015 (has links)
Formulation intervention, through the application of processing technologies, is a requirement for enabling therapy for the vast majority of drugs. Without these enabling technologies, poorly soluble drugs may not achieve therapeutic concentrations in the blood or tissue of interest. Conversely, freely soluble and/or rapidly cleared drugs may require frequent dosing resulting in highly cyclic tissue concentrations. During the last several years, thermal processing techniques, such as melt mixing, spray congealing, sintering, and hot-melt extrusion (HME), have evolved rapidly. Several new technologies, specifically dry powder coating, injection molding, and KinetiSol® dispersing (KSD), have been adapted to the pharmaceutical arena. Co-rotating twin screw extrusion is routinely applied for the purposes of dissolving poorly soluble drugs into glassy polymers to prepare amorphous solid dispersions, which create supersaturated drug concentrations in the gastro-intestinal tract. A potentially more advantageous alternate geometry, counter-rotating twin screw extrusion was evaluated for preparation of model amorphous solid dispersion and was observed to be more efficient in forming a solid solution and reduced the thermal stress on the drug. HME and KSD processes were utilized to prepare two phase systems consisting of a lipid, glyceryl behenate, and a polymeric amorphous solid dispersion intended to provide both controlled release of drug and supersaturated drug concentrations in the release medium. Such systems are challenging due to the potential for crystallization of the drug within the dosage form during release, which was observed to be influenced by lipophilicity and porosity of the formulation, as well as the surface area to volume ratio of the system. High molecular weight cellulose based glassy dispersions were prepared using a weakly basic model drug by KSD, which when formulated into tablets were optimized to provide either immediate or approximately 2 hours of controlled release under the pH conditions simulating the environment of the stomach. Without formulation intervention in the external phase of the tablet, these compositions gel, muting drug release and missing the drug absorption window. Compositions optimized by an in vitro dissolution test were compared to a lower molecular weight HME prepared commercial product in a beagle dog model and observed to have statistically similar bioavailability, and in one case improved variability. A modified twin screw extrusion machine was utilized to develop a continuous granulation process capable of producing granules that do not require subsequent grinding or sizing. This novel process, which employs previously un-reported temperature profiles, produces lipid based granules that when compressed into tablets produce a controlled release of tramadol hydrochloride, which were not susceptible to alcohol induced dose dumping. / text
|
10 |
A Raman spectroscopic study of solid dispersions and co-crystals during the pharmaceutical hot melt extrusion processBanedar, Parineeta Namdeo January 2015 (has links)
Process Analytical Technology (PAT) is framed with the objective of the design and development of processes to ensure predefined quality of the product at the end of manufacturing. PAT implementation includes better understanding of process, reduction in production time with use of in-line, at-line and on-line measurements, yield improvement and energy and cost reductions. Hot Melt Extrusion process (HME) used in the present work is proving increasingly popular in industry for its continuous and green processing which is beneficial over traditional batch processing. The present work was focused on applications of Raman spectroscopy as off - line and in - line monitoring techniques as a PAT for production of pharmaceutical solid dispersions and co-crystals. Solid dispersions (SDs) of the anti-convulsant Carbamazepine (CBZ) with two pharmaceutical grade polymers have been produced using HME at a range of drug loadings and their amorphous nature confirmed using a variety of analytical techniques. Off-line and in-line Raman spectroscopy has been shown to be suitable techniques for proving preparation of these SDs. Through calibration curves generated from chemometric analysis in-line Raman spectroscopy was shown to be more accurate than off-line measurements proving the quantification ability of Raman spectroscopy as well as a PAT tool. Pure co-crystals of Ibuprofen-Nicotinamide and Carbamazepine-Nicotinamide have been produced using solvent evaporation and microwave radiation techniques. Raman spectroscopy proved its superiority over off-line analytical techniques such as DSC, FTIR and XRD for co-crystal purity determination adding to its key advantage in its ability to be used as an in-line, non-destructive technique.
|
Page generated in 0.0922 seconds