• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 10
  • 10
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite element modelling of hot plane strain compression testing

Mata, Martha Patricia Guerrero January 1996 (has links)
No description available.
2

A Methodology Study of the Evolution of the Secondary Brassmaking Process when Adding of Non-metallic Inclusions

Baykal, Berkan January 2016 (has links)
Previously most of the research focusing on non-metallic inclusions additions have focused on Fealloys. The presence of inclusions has a great effect on the material properties of Fe-alloy. Brass (Cu-Zn) is a germicidal material which has been widely used for especially drinking water applications. However, the influence of non-metallic inclusions on the material properties in brass have only been studied to a limited degree by other researchers. The secondary brass-making process is not a common process compared to the secondary steelmaking process. The process of secondary metal making (re-melting) has several purposes such as to improve the cleanliness, deoxidation, microstructure, composition etc. The secondary brass making process is performed to improve mechanical and chemical properties of brass. The present work presents a precursory methodology research on the influence of the non-metallic inclusions on liquid Cu-alloys for the brass grade (CuZn38). The vague effect of the secondary brass-making technic for CuZn38 eco-brass research is estimated based on thermodynamic considerations. During a secondary brass-making process, the effects of the primary addition of the raw Al2O3 powder formation in molten brass has been studied by using a by specific quartz tube suction technique. The present work studied influence of the addition of raw Al2O3 powder in brass based on quartz tube samples and ingot samples. The used Al2O3 inclusions and deoxidizer in brass show that a similar characterization can be found as when secondary Al2O3 inclusions are present in steel-making. The results showed that the Al2O3 particles in brass had different morphologies. Specifically, Al2O3 reacts with ZnO under the formation of ZnAl2O4
3

Ideal Process Design Approach for Hot Metal Working

Wang, Xifan 30 August 2013 (has links)
No description available.
4

Adição de poeira de aciaria elétrica em ferro gusa líquido. / Addition of electric arc furnace dust in hot metal.

Marques Sobrinho, Vicente de Paulo Ferreira 14 August 2012 (has links)
Esta pesquisa tem como objetivo estudar o processo de incorporação de massa ao ferro gusa final e a volatilização da massa da poeira de aciaria elétrica (PAE) mediante adição em ferro gusa líquido à temperatura de 1400, 1450 e 15000C, alterando-se o percentual de PAE a ser adicionado e o teor de silício do ferro gusa. Previamente, a PAE foi caracterizada utilizando-se as seguintes técnicas: análise química, análise granulométrica, área de superfície específica, difração de raios-X, microscopia eletrônica de varredura (MEV) e análise de micro-regiões por espectroscopia de energia dispersiva (EDS). Após a caracterização, a PAE a ser adicionada ao banho de gusa líquido, foi aglomerada sob a forma de briquetes. A realização dos experimentos de fusão, em escala de laboratório, ocorreu em um forno de resistências com controlador de temperatura. Os experimentos de fusão utilizaram cadinhos de alumina. Um fluxo de gás inerte (argônio) foi mantido no interior do forno durante a realização dos experimentos. O resultado da amostra da PAE volatilizada mostra que há aumento na concentração de zinco quando se compara com a concentração de zinco da PAE na forma como recebido. Os valores das energias de ativação aparente estão na faixa de 75 a 177 kJ/mol para experimentos realizados com ferro gusa com teor de silício variando de 1,38 a 1,85% e entre 245 e 504 kJ/mol para experimentos realizados com ferro gusa com teor de silício variando entre 0,23 e 0,36%. / This research aims to study the process of incorporation of mass in final hot metal and the mass volatilization of electric arc furnace dust (EAFD) by addition in hot metal at a temperature of 1,400; 1,450 and 1,500 degrees Celsius, altering experimental conditions, such as the percentage of EAFD to be added and the percentage of silicon in hot metal. Previously, the EAFD was characterized using the following techniques: chemical analysis, size analysis, X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) microanalysis. After characterization, the EAFD to be added to the hot metal was agglomerated in the form of briquettes. The fusion experiments in laboratory scale took place in a vertical tubular furnace with temperature control. It was used alumina crucibles in the fusion experiments. A flow of inert gas (argon) was maintained inside the furnace during the experiments. The result of the EAFD volatilized sample shows that there is an increase in the zinc concentration when compared with the concentration of zinc presented in EAFD \"as received\". The values of the apparent activation energies are in the range 75-177 kJ/mol for experiments with hot metal with the silicon content ranging from 1.38 to 1.85% and between 245-504 kJ/mol to experiments performed with hot metal with silicon content ranging from 0.23 to 0.36%.
5

A Study on Desulfurization of Hot Metal Using Different Agents

Lindström, David January 2014 (has links)
This thesis deals with desulfurization of hot metal using different agents. The aim of this study was to improve the understanding of commonly used desulfurization agents such as fluidized CaO, CaC2, commercial-CaO, Mg, and mixtures of commercial-CaO-Mg. The possibility to use ZnO for desulfurization of hot metal was also investigated. The desulfurization mechanisms and kinetics of these agents were studied. A broad comparison of the desulfurization abilities of the agents was performed under the same experimental conditions. The experimental studies were carried out in a high temperature resistance furnace at 1773 K with good quenching ability and precise control of the oxygen partial pressure. The influence of ZnO in blast furnace slag on the sulfur removal potential was studied. It was found that ZnO does not stay in blast furnace slag under relevant oxygen potentials and consequently has no influence on its sulfur removal capacity. The reaction mechanism of Mg was studied by adding pure Mg into hot metal. It was found that most Mg (about 90 %) escaped as gas in less than two seconds, only providing a little desulfurization. MgS is not formed by homogenous nucleation, but on MgO particles originating from the surface of the added Mg metal. The growth of CaS around CaC2, fluidized CaO and commercial-CaO were measured and compared. The parabolic rate constants were evaluated to be 2.4∙10-7 [cm s-1] for CaC2, and 5∙10-7 [cm s-1] for fluidized CaO particles. The bigger parabolic rate constant of fluidized CaO explains why fluidized CaO achieved a much better desulfurization of hot metal than CaC2 under the same experimental conditions. Commercial-CaO performed less satisfactory in comparison to fluidized CaO powder. This was due to both its less reactive surface and agglomeration of the particles. Agglomerates and large CaO particles lead to 2CaO.SiO2 formation which hindered further utilization of CaO for desulfurization. The 2CaO.SiO2 formation was favored by a high oxygen potential. Since the desulfurization reaction of CaO not only produced CaS but also oxygen, the local oxygen concentration around big CaO particles was higher than around small particles. When small CaO particles were added together with Mg they quickly transformed to CaS. The Mg-gas helped to distribute the CaO particles in the hot metal and improved the kinetic conditions. The desulfurization abilities of some commonly used agents, namely fluidized CaO, CaC2, commercial-CaO, Mg, mixtures of commercial-CaO-Mg, and ZnO were studied and compared under the same experimental conditions. While fluidized CaO showed the best performance, commercial-CaO mixed with 20 mass % Mg achieved the second best desulfurization. Mg-granules performed slightly better than CaC2 and commercial-CaO, but somewhat less satisfactory compared to fluidized CaO and commercial-CaO-Mg mixtures. ZnO does not influence the sulfur concentration of hot metal. / <p>QC 20140404</p>
6

Adição de poeira de aciaria elétrica em ferro gusa líquido. / Addition of electric arc furnace dust in hot metal.

Vicente de Paulo Ferreira Marques Sobrinho 14 August 2012 (has links)
Esta pesquisa tem como objetivo estudar o processo de incorporação de massa ao ferro gusa final e a volatilização da massa da poeira de aciaria elétrica (PAE) mediante adição em ferro gusa líquido à temperatura de 1400, 1450 e 15000C, alterando-se o percentual de PAE a ser adicionado e o teor de silício do ferro gusa. Previamente, a PAE foi caracterizada utilizando-se as seguintes técnicas: análise química, análise granulométrica, área de superfície específica, difração de raios-X, microscopia eletrônica de varredura (MEV) e análise de micro-regiões por espectroscopia de energia dispersiva (EDS). Após a caracterização, a PAE a ser adicionada ao banho de gusa líquido, foi aglomerada sob a forma de briquetes. A realização dos experimentos de fusão, em escala de laboratório, ocorreu em um forno de resistências com controlador de temperatura. Os experimentos de fusão utilizaram cadinhos de alumina. Um fluxo de gás inerte (argônio) foi mantido no interior do forno durante a realização dos experimentos. O resultado da amostra da PAE volatilizada mostra que há aumento na concentração de zinco quando se compara com a concentração de zinco da PAE na forma como recebido. Os valores das energias de ativação aparente estão na faixa de 75 a 177 kJ/mol para experimentos realizados com ferro gusa com teor de silício variando de 1,38 a 1,85% e entre 245 e 504 kJ/mol para experimentos realizados com ferro gusa com teor de silício variando entre 0,23 e 0,36%. / This research aims to study the process of incorporation of mass in final hot metal and the mass volatilization of electric arc furnace dust (EAFD) by addition in hot metal at a temperature of 1,400; 1,450 and 1,500 degrees Celsius, altering experimental conditions, such as the percentage of EAFD to be added and the percentage of silicon in hot metal. Previously, the EAFD was characterized using the following techniques: chemical analysis, size analysis, X-ray diffraction, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) microanalysis. After characterization, the EAFD to be added to the hot metal was agglomerated in the form of briquettes. The fusion experiments in laboratory scale took place in a vertical tubular furnace with temperature control. It was used alumina crucibles in the fusion experiments. A flow of inert gas (argon) was maintained inside the furnace during the experiments. The result of the EAFD volatilized sample shows that there is an increase in the zinc concentration when compared with the concentration of zinc presented in EAFD \"as received\". The values of the apparent activation energies are in the range 75-177 kJ/mol for experiments with hot metal with the silicon content ranging from 1.38 to 1.85% and between 245-504 kJ/mol to experiments performed with hot metal with silicon content ranging from 0.23 to 0.36%.
7

A pre-study of Hot Metal Desulphurization

Yang, Annika Fang January 2012 (has links)
In this thesis work, some basic concepts about desulphurizationof hot metal have been done based on a literature study. Two experimentaltrials have also been carried out to study the slags: one consider as areference and in the other trial, the amount of calcium carbide was reduced by150 kg. The average carbide efficiency has been improved from 21.3% in trial 1 to 26.0% in trail 2. Metaldroplets containing iron oxides are found in three of eight heats and most ofmetal droplets are surrounded by Ti-compounds. The slags mainly consisted of (Ca,O, Si) and (Ca, S), with some low content of other elements.
8

A production and inventory control system design for the fenton art glass company

Archibald, George January 1983 (has links)
No description available.
9

High temperature tribological evaluation of a self-lubricating laser cladding with and without external solid lubricant

Nemeth, Cecilia January 2020 (has links)
The purpose of the project work was to build knowledge of the tribological behaviour of self-lubricating laser cladding, with and without external solid lubricant during conditions relevant for hot metal forming of aluminium. The materials used during the project were plates coated with a Ni-based self-lubricating clad and a reference sample of work tool steel. The self-lubricating laser clad was applied using a high power direct diode laser. The external solid lubricant used was a graphite dispersion. The external solid lubricant was applied on the samples using a spraying technique, leaving a dry layer of solid graphite on the plates. To test the tribological behaviour of the plates, linear reciprocating friction and wear tests were performed both under lubricated and dry conditions. During the dry tests, different surface roughness of the plates where investigated. The pins for the tribological test were made of AA7075. Parameters chosen for the tribological tests were based on conditions during hot forming of aluminium. After having taken images of the plates using scanning electron microscopy, and using a 3D optical profiler, the wear volume and material transfer was evaluated, and wear mechanism analysis was performed.   The tribological behaviour of polished Ni-based laser clad under dry conditions is comparable to that of the reference sample at its best performance. Using a mirror polished Ni-based laser clad under dry condition can be an option to not using external solid lubricant during hot forming of aluminium. Also, the surface roughness of the self-lubricating clad under dry conditions does not affect the coefficient of friction.
10

Material Transfer Mechanisms during Interaction of Aluminium Alloy and Tool Steel at Elevated Temperatures

Macêdo, Gabriel January 2020 (has links)
Hot stamping of aluminium alloys allows for increased formability, decreased springback and the possibility of integrating age-hardening heat treatments into the process. However, it can be challenging due to the occurrence of material transfer of aluminium onto the tool, as aluminium is prone to adhesion even at low temperatures. Hence, lubrication is always necessary when forming aluminium, but lubricants can still fail, leading to direct interaction between tool and workpiece and thus material transfer. This phenomenon reduces the efficiency of the process, as interruptions are necessary for the refurbishment of the tools. Understanding of how material transfer takes place is important in order to find new or improved solutions, in terms of lubrication and surface engineering, to prevent adhesion. Nevertheless, current research in high temperature tribology of aluminium, mainly in terms of material transfer mechanisms, is very limited, as many of the works focus on lubricated conditions and do not look into the fundamental interactions between aluminium alloys and tool steels. In this context, the aim of this work is to investigate the mechanisms behind the occurrence of aluminium alloy transfer onto tool steel during sliding at high temperature and in dry conditions. A hot-strip drawing tribometer was used to perform tests at room temperature, 300°C, 400°C, and 500°C, directly after solubilizing the aluminium alloy at 520°C. Two different topographies for the tool steel were used: ground and polished. Material transfer characterization was performed mainly through scanning electron microscopy. It was found that grinding marks (ground tool steel) and carbides (polished tool steel) act as initiation sites for the transfer to occur. Temperature plays a role on the growth mechanisms of the transfer films during sliding, as thermal softening of the aluminium alloy is the dominant factor in determining the growth direction of the transfer layers. A growth towards the trailing edge (shearing and smearing of the transferred aluminium) or a growth towards the leading edge (build-up of transferred aluminium, leading to a thicker and more localized transfer material).

Page generated in 0.0465 seconds