• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution des électrons cinétiques dans les plasmas de Tokamak / Contribution of kinetic electrons in Tokamak plasmas

Ehrlacher, Charles 12 July 2018 (has links)
Les plasmas de fusion par confinement magnétique sont le siège d'instabilités qui développent des structures turbulentes d'échelles milli- à centi-métriques. Le transport qui en résulte contrôle le temps de confinement de l'énergie et, in fine, les performances énergétiques.Dans les régimes de confinement non améliorés, c'est une turbulence à l'échelle ionique qui domine ce transport. Cette turbulence est portée par les ions, mais également par une certaine classe d'électrons, ceux qui sont piégés dans les miroirs locaux du champ magnétique. Il est de fait important de prendre en compte leur dynamique, d'autant plus qu'ils sont également responsables du transport de matière.L'objectif de la thèse consiste à étudier l'impact des électrons d'une part, sur l'amortissement des "Geodesic Acoustic Modes" (GAM) d'une part, et sur la croissance linéaire des modes de turbulence "Ion Temperature Gradients" (ITG) et "Trapped Electron Modes" (TEM) d'autre part.Les GAMs sont des oscillations à la fréquence acoustique du potentiel électrique moyen sur les surfaces magnétiques. Ils interagissent de façon critique avec la micro-turbulence au travers notamment de leur couplage au mouvement des particules énergétiques du plasma. Les ITG et TEM représentent les 2 classes d'instabilités électrostatiques dominantes dans le cœur des plasmas de tokamak. Elles sont à ce titre supposées contrôler le transport turbulent de cœur.Cette étude est donc une étape préliminaire pour la prédiction du transport turbulent en prenant en compte l'influence des électrons.Le cadre approprié pour décrire cette turbulence est la théorie dite "gyrocinétique", qui procède d'une réduction de l'espace des phases de 6 dimensions (6D) à 4D + 1 invariant par une moyenne sur le mouvement rapide cyclotronique. Le problème auto-consistant couple l'équation gyrocinétique pour chaque espèce (ions et électrons) aux équations de Maxwell.Le développement de ce modèle cinétique, construit comme une extension autonome du code extsc{Gysela} dont la version de base donne une réponse adiabatique aux électrons, consiste à ajouter le traitement de la fonction de distribution des électrons. Leur prise en compte est coûteuse du point de vue des ressources numériques. Trois stratégies sont envisagées pour réduire ce coût: (i) considérer des "électrons lourds", (ii) filtrer les électrons et ne retenir que ceux qui sont piégés, et (iii) adapter les coordonnées pour découpler les dynamiques parallèle (rapide) et transverse (lente) au champ magnétique.Après une présentation du modèle gyrocinétique et des caractéristiques du code extsc{Gysela}, nous présentons le modèle des électrons adiabatiques tel qu'il est implémenté dans extsc{Gysela} et introduisons deux nouveaux modèles: le modèle "Full Kinetic Electrons" dans lequel les électrons sont considérés comme une espèce cinétique et sont traités de la même façon que les ions et le modèle "Trapped Kinetic Electrons" dans lequel seuls les électrons piégés sont cinétiques, les électrons passants reçoivent quant à eux un traitement adiabatique. On constate que les électrons engendrent un sur-amortissement des GAM lié à une intéraction résonante entre la fréquence de rebond de certains électrons piégés et celle des GAMs.Cet amortissement dépend du rapport de masse électron-ion et évolue en $(m_i/m_e)^{-1/2}$. Pour les simulations linéaires sur l'instabilité d'interchange, on retrouve que les modes ITG sont dominants sur les modes TEM pour des forts gradients de température ionique et vice versa, à profil de température électronique fixé. Un accord satisfaisant est obtenu avec le code gyrocinétique GT5D dont les résultats viennent d'être publiés. Enfin, nous proposons quelques méthodes pour construire des cas non linéaires qui permettront d'étudier l'influence des électrons cinétiques sur le transport turbulent. / Instabilities, within fusion plasmas by magnetic confinement, develop turbulent structures with milli-centimetric scales. The resulting transport impacts the energy confinement time and, ultimately, the energy performance.In unimproved confinement regimes, ion-scale turbulence generally dominates this transport. This turbulence is carried by the ions, but also by a certain class of electrons, those trapped in the local mirrors of the magnetic field. Take into account their dynamics is important, especially since they are also responsible for particle transport.The aim of this thesis is to study the impact of electrons on the damping of "Geodesic Acoustic Modes" (GAM) on the one hand and the linear growth of the turbulence modes "Ion Temperature Gradients" (ITG) and "Trapped Electron Modes" (TEM) on the other hand.GAMs are oscillations at the acoustic frequency of the average electric potential on magnetic surfaces. They interact critically with micro-turbulence, particularly through their coupling to the motion of energetic particles in the plasma. ITG and TEM represent the 2 classes of dominant electrostatic instabilities in tokamak core plasmas. As such, they are supposed to control turbulent transport in the core.This study is therefore a preliminary step for the prediction of turbulent transport while taking into account the influence of electrons.The appropriate framework for describing this turbulence is the so-called "gyrokinetic" theory, which proceeds from a 6 dimensions (6D) to 4D + 1 phase space reduction invariant by an average of the fast cyclotron motion. The self-consistent problem couples the gyrokinetic equation for each species (ions and electrons) to the Maxwell equations.The development of this kinetic model, built as an autonomous extension of the extsc{Gysela} code whose basic version gives an adiabatic response to electrons, consists in adding the treatment of the electron distribution function. Taking kinetic electrons into account is costly numerically. Three strategies are envisaged to reduce this cost: (i) consider "heavy electrons", (ii) filter electrons so as to keep only the trapped ones, and (iii) adapt the coordinates to decouple the parallel dynamics (fast) and the transverse one (slow) to the magnetic field.After a presentation of both the gyrokinetic model and some characteristics of the extsc{Gysela} code, we expose the adiabatic electrons model as it is implemented in extsc{Gysela} and introduce two new models: the "Full Kinetic Electrons" model in which electrons are treated kinetically in the same way as the ions and the "Trapped Kinetic Electrons" model in which only the trapped electrons are kinetic, the passing electrons receiving an adiabatic treatment. It is found that electrons generate an over-damping of the GAM explained by a resonant interaction between the bounce frequency of some trapped electrons and that of the GAMs.This damping depends on the electron-ion mass ratio and evolves as $(m_i/m_e)^{-1/2}$. For linear simulations on interchange instability, we find that the ITG modes are dominant over the TEM modes for large ion temperature gradients and vice versa, at finite electron temperature gradient. A satisfying agreement is obtained with the gyrokinetic code GT5D whose results have just been published. Finally, we give some suggestions for future simulations to build non linear cases that could enable to study the influence of kinetic electrons on turbulent transport.
2

FENICIA : un code de simulation des plasmas basé sur une approche de coordonnées alignées indépendante des variables de flux / FENICIA : a generic plasma simulation code using a flux-independent field-aligned coordinate approach

Hariri, Farah 19 November 2013 (has links)
Ce travail porte sur le développement et la vérification d’une nouvelle approche de coordonnées alignées FCI (Flux-Coordinate Independent), qui tire partie de l’anisotropie du transport dans un plasma immergé dans un fort champ magnétique. Sa prise en compte dans les codes numériques permet de réduire grandement le coût de calcul nécessaire pour une précision donnée. Une particularité de l’approche nouvellement développée dans ce manuscrit est en particulier sa capacité à traiter, pour la première fois, des configurations avec point X. Toutes ces analyses ont été conduites avec FENICIA, code modulaire entièrement développé dans le cadre de cette thèse, et permettant la résolution d’une classe de modèles génériques. En résumé, la méthode développée dans ce travail est validée. Elle peut s’avérer pertinente pour un large champ d’application dans le contexte de la fusion magnétique. Il est montré dans cette thèse que cette technique devrait pouvoir s’appliquer aussi bien aux modèles fluides que gyrocinétiques de turbulence, et qu’elle permet notamment de surmonter un des problèmes fondamentaux des techniques actuelles, qui peinent à traiter de manière précise la traversée de la séparatrice. / The primary thrust of this work is the development and implementation of a new approach to the problem of field-aligned coordinates in magnetized plasma turbulence simulations called the FCI approach (Flux-Coordinate Independent). The method exploits the elongated nature of micro-instability driven turbulence which typically has perpendicular scales on the order of a few ion gyro-radii, and parallel scales on the order of the machine size. Mathematically speaking, it relies on local transformations that align a suitable coordinate to the magnetic field to allow efficient computation of the parallel derivative. However, it does not rely on flux coordinates, which permits discretizing any given field on a regular grid in the natural coordinates such as (x, y, z) in the cylindrical limit. The new method has a number of advantages over methods constructed starting from flux coordinates, allowing for more flexible coding in a variety of situations including X-point configurations. In light of these findings, a plasma simulation code FENICIA has been developed based on the FCI approach with the ability to tackle a wide class of physical models. The code has been verified on several 3D test models. The accuracy of the approach is tested in particular with respect to the question of spurious radial transport. Tests on 3D models of the drift wave propagation and of the Ion Temperature Gradient (ITG) instability in cylindrical geometry in the linear regime demonstrate again the high quality of the numerical method. Finally, the FCI approach is shown to be able to deal with an X-point configuration such as one with a magnetic island with good convergence and conservation properties.
3

Dynamique d'un plasma non collisionnel interagissant avec une impulsion laser ultra-intense / Dynamics of a collisionless plasma interacting with an ultra-intense laser pulse

Capdessus, Rémi 25 November 2013 (has links)
L'interaction d'un plasma avec une impulsion laser-intense suscite de plus en plus d'intérêt du fait des progrès en matière de technologie laser d'outils numériques. La réaction du rayonnement affecte la dynamique des électrons, celle du rayonnement synchrotron, ainsi que celle des ions via le champ de séparation de charge, pour des intensités laser supérieures à 10puissance22 W/CM2. les équations cinétiques régissant le transport de particules à ultra-haute intensité ont été obtenues. La réaction du rayonnement implique la contraction du volum de l'epace des phases des électrons A l'aide de simulations numériques nous avons démontré la forte rétro-action que les effets collectifs induisent sur le rayonnement synchrotron généré par les électons accélérés. L'importance des effets collectifs dépend fortement de la masse des ions et de l'épaisseur du plasma considéré. Ces effets pourraient être vérifiés expérimentalement avec des cibles cryogéniques d'hydrogène. / Résumé en anglais

Page generated in 0.0371 seconds