Spelling suggestions: "subject:"houppiers"" "subject:"houppier""
1 |
Le modèle "gaz de cercles" et son application à l'extraction de houppiersHorvath, Peter 03 December 2007 (has links) (PDF)
Nous présentons le modèle de gaz de cercles (GDC) qui permet de décrire un ensemble de cercles de rayon approximativement fixe. Il est fondé sur la théorie récente des contours actifs d'ordre supérieur (CAOS). Pour certains paramètres, le modèle favorise la création de cercles stables de rayon approximativement fixe au lieu de créer des réseaux. Nous montrons dans cette thèse comment déterminer ces paramètres. Le modèle général de GDC peut être appliqué dans des domaines variés, mais souffre d'un inconvénient: les minima locaux correspondant aux cercles peuvent piéger l'algorithme de descente de gradient, produisant ainsi des cercles `fantômes'. Nous résolvons ce problème en calculant, via le développement de Taylor de l'énergie, les paramètres qui permettent de positionner les cercles sur les points d'inflexion plutôt que sur les minima. Il est possible de créer une autre formulation pour les modèles CAOS, fondée sur les champs de phase. Nous abordons le problème d'extraction de houppiers par la construction d'un modèle de champs de phase de GDC. Les images utilisées sont des images couleur-infrarouge (CIR) et panchromatiques. Nous introduisons deux modèles d'attache aux données. Le premier décrit l'utilisation d'une seule bande parmi les trois disponibles et est fondé sur le gradient de l'image et sur les distributions gaussiennes. Le deuxième utilise les trois bandes spectrales des images CIR. Ces modèles permettent d'avoir des résultats plus précis que par des modèles plus traditionnels. Ces modèles peuvent être appliqués pour la détection d'autres objets circulaires.
|
2 |
Application de l'identification d'objets sur images à l'étude de canopées de peuplements forestiers tropicaux : cas des plantations d'Eucalyptus et des mangrovesZhou, Jia 16 November 2012 (has links) (PDF)
La thèse s'inscrit dans l'étude de la structuration des forêts à partir des propriétés de la canopée telles que décrites par la distribution spatiale ou la taille des houppiers des arbres dominants. L'approche suivie est fondée sur la théorie des Processus Ponctuels Marqués (PPM) qui permet de modéliser ces houppiers comme des disques sur images considérées comme un espace 2D. Le travail a consisté à évaluer le potentiel des PPM pour détecter automatiquement les houppiers d'arbres dans des images optiques de très résolution spatiale acquises sur des forêts de mangroves et des plantations d'Eucalyptus. Pour les mangroves, nous avons également travaillé sur des images simulées de réflectance et des données Lidar. Différentes adaptations (paramétrage, modèles d'énergie) de la méthode de PPM ont été testées et comparées grâce à des indices quantitatifs de comparaison entre résultats de la détection et références de positionnement issues du terrain, de photo-interprétation ou de maquettes forestières. Dans le cas des mangroves, les tailles de houppier estimées par détection restent cohérentes avec les sorties des modèles allométriques disponibles. Les résultats thématiques indiquent que la détection par PPM permet de cartographier dans une jeune plantation d'Eucalyptus la densité locale d'arbres dont la taille des houppiers est proche de la résolution spatiale de l'image (0.5m). Cependant, la qualité de la détection diminue quand le couvert se complexifie. Ce travail dresse plusieurs pistes de recherche tant mathématique, comme la prise en compte des objets de forme complexe, que thématiques, comme l'apport des informations forestières à des échelles pertinentes pour la mise au point de méthodes de télédétection.
|
3 |
Application de l’identification d’objets sur images à l’étude de canopées de peuplements forestiers tropicaux : cas des plantations d'Eucalyptus et des mangroves / Object identification on remote sensing images of tropical forest canopies -Applications to the study of Eucalyptus plantation and mangrove forestZhou, Jia 16 November 2012 (has links)
La thèse s'inscrit dans l'étude de la structuration des forêts à partir des propriétés de la canopée telles que décrites par la distribution spatiale ou la taille des houppiers des arbres dominants. L'approche suivie est fondée sur la théorie des Processus Ponctuels Marqués (PPM) qui permet de modéliser ces houppiers comme des disques sur images considérées comme un espace 2D. Le travail a consisté à évaluer le potentiel des PPM pour détecter automatiquement les houppiers d'arbres dans des images optiques de très résolution spatiale acquises sur des forêts de mangroves et des plantations d'Eucalyptus. Pour les mangroves, nous avons également travaillé sur des images simulées de réflectance et des données Lidar. Différentes adaptations (paramétrage, modèles d'énergie) de la méthode de PPM ont été testées et comparées grâce à des indices quantitatifs de comparaison entre résultats de la détection et références de positionnement issues du terrain, de photo-interprétation ou de maquettes forestières.Dans le cas des mangroves, les tailles de houppier estimées par détection restent cohérentes avec les sorties des modèles allométriques disponibles. Les résultats thématiques indiquent que la détection par PPM permet de cartographier dans une jeune plantation d'Eucalyptus la densité locale d'arbres dont la taille des houppiers est proche de la résolution spatiale de l'image (0.5m). Cependant, la qualité de la détection diminue quand le couvert se complexifie. Ce travail dresse plusieurs pistes de recherche tant mathématique, comme la prise en compte des objets de forme complexe, que thématiques, comme l'apport des informations forestières à des échelles pertinentes pour la mise au point de méthodes de télédétection. / This PhD work aims at providing information on the forest structure through the analysis of canopy properties as described by the spatial distribution and the crown size of dominant trees. Our approach is based on the Marked Point Processes (MPP) theory, which allows modeling tree crowns observed in remote sensing images by discs belonging a two dimensional space. The potential of MPP to detect the trees crowns automatically is evaluated by using very high spatial resolution optical satellite images of both Eucalyptus plantations and mangrove forest. Lidar and simulated reflectance images are also analyzed for the mangrove application. Different adaptations (parameter settings, energy models) of the MPP method are tested and compared through the development of quantitative indices that allow comparison between detection results and tree references derived from the field, photo-interpretation or the forest mockups.In the case of mangroves, the estimated crown sizes from detections are consistent with the outputs from the available allometric models. Other results indicate that tree detection by MPP allows mapping, the local density of trees of young Eucalyptus plantations even if crown size is close to the image spatial resolution (0.5m). However, the quality of detection by MPP decreases with canopy closeness. To improve the results, further work may involve MPP detection using objects with finer shapes and forest data measurements collected at the tree plant scale.
|
4 |
Etude du couvert forestier par processus ponctuels marquésPerrin, Guillaume 02 October 2006 (has links) (PDF)
Cette thèse aborde le problème de l'extraction d'arbres à partir d'images aériennes InfraRouge Couleur (IRC) de forêts. Nos modèles reposent sur l'utilisation de processus objets ou processus ponctuels marqués. Il s'agit de variables aléatoires dont les réalisations sont des configurations d'objets géométriques. Une fois l'objet géométrique de référence choisi, nous définissons l'énergie du processus par le biais d'un terme a priori, modélisant les contraintes sur les objets et leurs interactions, ainsi qu'un terme image. Nous échantillonnons le processus objet grâce à un algorithme de type Monte Carlo par Chaînes de Markov à sauts réversibles (RJMCMC), optimisé par un recuit simulé afin d'extraire la meilleure configuration d'objets, qui nous donne l'extraction recherchée.<br /><br />Dans ce manuscrit, nous proposons différents modèles d'extraction de houppiers, qui extraient des informations à l'échelle de l'arbre selon la densité du peuplement. Dans les peuplements denses, nous présentons un processus d'ellipses, et dans les zones de plus faible densité, un processus d'ellipsoïdes. Nous obtenons ainsi le nombre d'arbres, leur localisation, le diamètre de la couronne et leur hauteur pour les zones non denses. Les algorithmes automatiques résultant de cette modélisation sont testés sur des images IRC très haute résolution fournies par l'Inventaire Forestier National (IFN).
|
Page generated in 0.029 seconds