• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of Cbx4/Polycomb-2 in epidermal stem cell homeostasis.

Luis, Nuno Miguel 07 November 2011 (has links)
Human epidermis relies on a population of adult stem cells to maintain its homeostasis. Stem cells transit from a dormant to an active state and undergo a tightly regulated process of differentiation that replenishes the tissue according to its needs. This process either replaces cells that get shed away, or contributes to tissue healing upon injuries, such as wounding. Distinct molecular mechanisms are required to keep human epidermal stem cells localized in their niche and for their active proliferation and mobilization, while others regulate their differentiation status. However, little is known about the proper global chromatin modifications that ensure the correct transition between these stem cell states. This work shows that Cbx4, a Polycomb Repressive Complex-1 (PRC1)-associated protein, maintains human epidermal stem cells slow-cycling and undifferentiated, while protecting them from senescence. Interestingly, abrogating the polycomb activity of Cbx4 impairs its anti-senescent function without affecting stem cell differentiation, indicating that differentiation and senescence are independent processes in human epidermis. Conversely, Cbx4 inhibits stem cell activation and differentiation through its SUMO ligase activity. Global transcriptome and chromatin occupancy analyses indicate that Cbx4 regulates modulators of epidermal homeostasis and represses factors, such as Ezh2, Dnmt1, and Bmi1, to prevent the active stem cell state. Interestingly, Cbx4 also represses genes required for neuronal fate repression, suggesting that it might have a role in ectoderm patterning during development. Cbx proteins are differently expressed during epidermal differentiation and the activity of Cbx4 towards promoting human epidermal stem cell quiescence is unique among the Cbx proteins. This suggests that different Polycomb complexes are assembled, based on the availability of its core member, and balance epidermal stem cell dormancy and activation, while continually preventing senescence and differentiation. / La homeostasis de la epidermis humana depende de una población de células troncales adultas (CTAs). Las CTAs alternan ciclos de quiescencia y actividad, seguidos por una regulación estricta de su diferenciación, según las necesidades celulares del tejido. Este proceso es esencial para repoblar el tejido de células envejecidas o dañadas. Cada estadío por el que transita una CTA está regulado por procesos moleculares específicos. Sin embargo, aún sabemos poco sobre los procesos que regulan la reorganización de la cromatina necesarios para mediar dichas transiciones en la población de las CTAs. Estos resultados demuestran que la proteina Cbx4, pertenciente al complejo Polycomb Repressive Complex-1 (PRC1), es necesaria para mantener a las CTAs de la epidermis humana quiescentes, indiferenciadas, y protegidas de la senescencia. A nivel molecular, la actividad polycomb de Cbx4 es únicamente necesaria para su función antisenescente, pero es dispensable para la regulación de la proliferación y diferenciación de las CTAs. La inhibición de la proliferación y diferenciación celular sin embargo depende de la activdad E3 SUMO ligasa de Cbx4. Analisis del transcriptoma global y de unión a la cromatina (ChIP), demuestran que Cbx4 regula la expresión de moduladores esenciales de la homeostasis de la epidermis, y reprime la expresión de factores necesarios para la activación de las CTAs, tales como Ezh2, Dnmt1 y Bmi1. Cabe destacar que Cbx4 también reprime la expresión de genes que determinam el linage neuronal, lo que sugiere que Cbx4 pueda ser importante para separar el neuroectodermo entre ectodermo y neuronas, durante el desarrollo embrionario. Cbx4 es la única proteina Cbx capaz de inducir entrada en quiescencia de las CTAs, y el resto de proteinas Cbx se expresa de forma diferente durante la diferenciación en la epidermis. Por lo tanto, nuestros estudios sugieren que la actividad de distintos complejos Polycomb actúa en los sucesivos estadíos de quiescencia, proliferación y diferenciación de las CTAs, a la vez que impiden su senescencia de forma constante.
2

Regulation of replication dependent nucleosome assembly

Gopinathan Nair, Amogh 04 1900 (has links)
Chez les cellules humaines, environ 2 mètres d'ADN est compacté dans le noyau cellulaire par la formation d'une structure nucléoprotéique appelée chromatine. La chromatine est composée d'ADN enroulé à la surface d'un octamère de core histones pour former une structure appelée nucléosome. La structure de la chromatine doit être altérée afin d'accéder à l'information génétique pour sa réplication, sa réparation et sa transcription. La duplication de la chromatine lors de la phase S est cruciale pour la prolifération et la survie des cellules. Cette duplication de la chromatine requière une ségrégation des histones parentales, mais aussi une déposition d'histones néo-synthétisées sur l'ADN. Ces deux réactions résultent en formation de chromatine dès qu'une quantité suffisante d'ADNest générée par la machinerie de réplication. De plus, en raison de conditions intrinsèques et extrinsèques, la machinerie de réplication est souvent confrontée à de nombreux obstacles, sous la forme de lésions à l'ADN qui interfèrent avec la réplication de l'ADN. Sous ces conditions, l'assemblage de nucléosomes et la synthèse d'histones sont étroitement régulées afin d'éviter la production d'un excès d'histones et leurs nombreuses conséquences nuisibles à la cellule. "Chromatin Assembly Factor 1" (CAF-1) est responsable de la déposition initiale des molécules d'H3 et H4 derrière les fourches de réplication. Pour permettre sa fonction d'assemblage de chromatine, CAF-1 est localisée aux fourches de réplication en vertue de sa liaison à une protéine appelée Proliferating Cell Nuclear Antigen (PCNA). Cependant, le mécanisme moléculaire par lequel CAF-1 exerce sa function demeure mal compris. Dans le deuxième chapitre de ma thèse, j'ai exploré comment CAF-1 se lie à PCNA d'une manière distincte des nombreux autres partenaires de PCNA. Grâce à nos collaborateurs, des études de crystallographie ont démontré que CAF-1 se lie à PCNA grâce à une interaction non-canonique entre le "PCNA Interaction Peptide" (PIP) de CAF-1 et une interaction de type cation-pi (π). Nous avons aussi montré qu'une substitution d'un seul acide aminé, unique au PIP de CAF-1, abolit son interaction avec PCNA et sa capacité d'assemblage de nuclésomes. Nous avons aussi montré que le PIP de CAF-1 est situé à l'extrémité C-terminale d'une très longue hélice alpha qui est conservée à travers l'évolution parmi de nombreux homologues de CAF-1. Nos études biophysiques ontmontré que cette longue hélice alpha forme des structures oligomériques de type "coiled-coil", ce qui suggère certains mécanismes pour dédier un anneau de PCNA à l'assemblage de chromatine et ce, en dépit des nombreux intéracteurs de PCNA présents aux fourches de réplication. Dans le troisième chapitre de ma thèse, nos collaborateurs et moi-même avons étudié les mécanismes moléculaires par lesquels les cellules parviennent à maintenir un équilibre délicat entre la synthèse d'ADN et la synthèse d'histones et ce, même en présence de lésions à l'ADN qui interfèrent avec la réplication. Chez Saccharomyces cerevisiae, nous avons montré que les kinases de réponse au dommage à l'ADN, Mec1/Tel1 et Rad53, inhibent la transcription des gènes d'histones en réponse aux liaisons à l'ADN qui interfèrent avec la réplication. Nous avons montré que la répression des gènes d'histones induite par le dommage à l'ADN est médiée par une phosphorylation extensive de Hpc2, l'une des sous-unités du complexe "Histone Gene Repressor" (HIR). Hpc2 contient un domaine qui se lie à l'histone H3. À partir de la structure d'Hpc2, nous avons généré des mutants qui, d'après la structure, sont incapables de se lier à l'histone H3. Nos résultats montrent que l'accumulation d'histones en excès provoquée par le dommage à l'ADN entraîne la phosphorylation d'Hpc2 and la liaison de l'excès d'histone H3 à Hpc2. Ces résultats suggèrent que la répression transcriptionnelle des gènes d'histones induite par le dommage à l'ADN est médiée, du moins en partie, par une simple rétroaction négative impliquant la liaison des histones en excès à la sous-unité Hpc2 du complexe HIR. / In human cells, roughly 2 meters of DNA is compacted into the cell nucleus by the formation of a nucleoprotein complex called chromatin. Chromatin is composed of DNA wrapped around an octamer of core histones to form so-called nucleosomes. Chromatin structure needs to be altered to access genetic information for processes like replication, repair and transcription. Duplication of chromatin during S phase is vital for cell proliferation and viability. Chromatin duplication requires segregation of parental histones, but also deposition of newly synthesized histones onto DNA. This process results in packaging all of the synthesized DNA with histones to form nucleosomes as soon as enough nascent DNA has emerged from the replication machinery. Moreover, as a result of intrinsic and extrinsic conditions, the replication machinery often encounters DNA lesions that impede the continuous synthesis of DNA. Under these conditions, nucleosome assembly and histone synthesis are tightly regulated to prevent the production of an excess of histone proteins and their deleterious consequences. Chromatin Assembly Factor-1 (CAF-1) performs the initial step in chromatin assembly by depositing newly synthesized histone H3-H4 molecules behind replication forks. In order to perform its chromatin assembly function, CAF-1 localizes to DNA replication forks by binding directly to a protein known as the Proliferating Cell Nuclear Antigen (PCNA). However, the exact molecular mechanism by which this is achieved remains poorly understood. Through the second chapter of my thesis, I have explored how CAF-1 binds PCNA in a manner that is distinct from the numerous other binding partners of PCNA. With the help of our collaborators, crystallographic studies demonstrated that CAF-1 binds to PCNA by virtue of a non-canonical PCNA interaction peptide (PIP) and a cation-pi (π) interaction. We have also shown that a single amino acid substitution, unique to the PIP of CAF-1, disrupts its binding to PCNA and chromatin assembly activity. We found that the CAF-1 p150 PIP resides at the extreme C-terminus of a long alpha helix that is evolutionarily conserved among numerous homologues of CAF-1. Our biophysical studies showed that this long alpha-helix is capable of forming higher-order coiled coils, which suggests mechanisms to dedicate one PCNA ring for chromatin assembly despite the presence of multiple PCNA interactors at replication forks. In the third chapter of this thesis, our collaborators and I have addressed the crucial molecular mechanisms by which cells maintain a delicate balance between DNA and histone synthesis despite the presence of DNA lesions that interfere with replication. In Saccharomyces cerevisiae, we showed that the DNA damage response kinases Mec1/Tel1 and Rad53 inhibit histone gene transcription when DNA lesions block DNA replication. We also showed that this repression is mediated by phosphorylation of the Hpc2 subunit of the Histone Gene Repressor complex (HIR). Hpc2 contains a domain that directly binds to histone H3. Interestingly, structure-based mutants of Hpc2 predicted to be incapable of binding H3 are defective in DNA damage-induced transcriptional repression of histone genes in response to DNA damage during replication. Our results indicate that the accumulation of excess histones caused by DNA damage during S phase triggers extensive phosphorylation of Hpc2 and binding of excess H3 to Hpc2. This suggests that DNA damage-induced repression of histone genes is mediated, at least in part, by a simple negative feedback triggered by binding of excess histones to the Hpc2 subunit of the HIR complex.

Page generated in 0.0409 seconds