Spelling suggestions: "subject:"hubbard model"" "subject:"hubbards model""
61 |
Hierarchical equations of motion for open quantum systems consisting of many energy states / 大規模量子散逸系を対象とした階層型運動方程式の開発Nakamura, Kiyoto 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23731号 / 理博第4821号 / 新制||理||1689(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 谷村 吉隆, 教授 林 重彦, 教授 渡邊 一也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
62 |
Exchange and superexchange interactions in quantum dot systemsDeng, Kuangyin 10 February 2021 (has links)
Semiconductor quantum dot systems offer a promising platform for quantum computation. And these quantum computation candidates are normally based on spin or charge properties of electrons. In these systems, we focus on quantum computation based on electron spins since these systems has good scalability, long coherence times, and rapid gate operations. And this thesis focuses on building a theoretical description of quantum dot systems and the link between theory and experiments.
In many quantum dot systems, exchange interactions are the primary mechanism used to control spins and generate entanglement. And exchange energies are normally positive, which limits control flexibility. However, recent experiments show that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin triplet-like rather than singlet-like ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both triplet-like and singlet-like ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that triplet-like ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.
Recent experiments also show the potential to utilize large quantum dots to mediate superexchange interaction and generate entanglement between distant spins. This opens up a possible mechanism for selectively coupling pairs of remote spins in a larger network of quantum dots. Taking advantage of this opportunity requires a deeper understanding of how to control superexchange interactions in these systems. Here, we consider a triple-dot system arranged in linear and triangular geometries. We use CI calculations to investigate the interplay of superexchange and nearest-neighbor exchange interactions as the location, detuning, and electron number of the mediating dot are varied. We show that superexchange processes strongly enhance and increase the range of the net spin-spin exchange as the dots approach a linear configuration. Furthermore, we show that the strength of the exchange interaction depends sensitively on the number of electrons in the mediator. Our results can be used as a guide to assist further experimental efforts towards scaling up to larger, two-dimensional quantum dot arrays. / Doctor of Philosophy / Semiconductor quantum dot systems offer a promising platform for quantum computation. And these quantum computation candidates are normally based on spin or charge properties of electrons. In these systems, we focus on quantum computation based on electron spins since these systems has good scalability, long coherence times, and rapid gate operations. And this thesis focuses on building a theoretical description of quantum dot systems and the link between theory and experiments. A key requirement for quantum computation is the ability to control individual qubits and couple them together to create entanglement. In quantum dot spin qubit systems, the exchange interaction is the primary mechanism used to accomplish these tasks. This thesis is about attaining a better understanding of exchange interactions in quantum dot spin qubit systems and how they can be manipulated by changing the configuration of the system and the number of electrons. In this thesis, we show negative exchange energy can arise in large size quantum dots. This result holds for symmetric and asymmetric shape of the large dots. And we also provide a quantitative analysis of how large quantum dots can be used to create long-distance spin-spin interactions. This capability would greatly increase the flexibility in designing quantum processors built by quantum dot spins. The interplay of these systems with different geometry can serve as a guide to assist further experiments and may hopefully be the basis to build two-dimensional quantum dot arrays.
|
63 |
Exact Diagonalization Studies of Strongly Correlated SystemsRaum, Peter Thomas 14 January 2020 (has links)
In this dissertation, we use exact diagonalization to study a few strongly correlated systems, ranging from the Fermi-Hubbard model to the fractional quantum Hall effect (FQHE). The discussion starts with an overview of strongly correlated systems and what is meant by strongly correlated. Then, we extend cluster perturbation theory (CPT), an economic method for computing the momentum and energy resolved Green's function for Hubbard models to higher order correlation functions, specifically the spin susceptibility. We benchmark our results for the one-dimensional Fermi-Hubbard model at half-filling. In addition we study the FQHE at fillings $nu = 5/2$ for fermions and $nu = 1/2$ for bosons. For the $nu = 5/2$ system we investigate a two-body model that effectively captures the three-body model that generates the Moore-Read Pfaffian state. The Moore-Read Pfaffian wave function pairs composite fermions and is believed to cause the FQHE at $nu = 5/2$. For the $nu = 1/2$ system we estimate the entropy needed to observe Laughlin correlations with cold atoms via an ansatz partition function. We find entropies achieved with conventional cooling techniques are adequate. / Doctor of Philosophy / Strongly correlated quantum many-body physics is a rich field that hosts a variety of exotic phenomena. By quantum many-body we mean physics that is concerned with the behavior of interacting particles, such as electrons, where the quantum behavior cannot be ignored. By strongly correlated, we mean when the interactions between particles are sufficiently strong such that they cannot be treated as a small perturbation. In contrast to weakly correlated systems, strongly correlated systems are much more difficult to solve. That is because methods that reduce the many-body problem to a single independent body problem do not work well. In this dissertation we use exact diagonalization, a method to computationally solve quantum many-body systems, to study two strongly correlated systems: the Hubbard model and the fractional quantum Hall effect.The Hubbard model captures the physics of many interesting materials and is the standard toy model. Originally developed with magnetic properties in mind, it has been extended to study superconductivity, topological phases, cold atoms, and much more. The fractional quantum Hall effect is a novel phase of matter that hosts exotic excitations, some of which may have applications to quantum computing.
|
64 |
The study of many-electron systemsZhou, Yu 14 October 2005 (has links)
Various methods and approximation schemes are used to study many-electron interacting systems. Two important many-particle models, the Anderson model and the Hubbard model, and their electromagnetic properties have been investigated in many parameter regimes, and applied to physical systems.
An Anderson single-impurity model Hamiltonian based calculation of the magnetic susceptibility is performed for YbN in the presence of crystal fields using an alteration of the Non-Crossing Approximation proposed by Zwicknagl et.al., incorporating parameters obtained from ab initio band structure calculations. It yields good agreement with experimental data. For the Anderson lattice model, a variational scheme which uses specific many-electron wavefunctions as basis is applied to both one- and two-dimensional systems represented by symmetric Anderson lattice Hamiltonians. Without much computational effort, the ground state energy is well approximated, especially in strong-coupling limit. Some electronic properties are examined using the variational ground state wavefunction.
The one-dimensional Hubbard model has been solved exactly for small-size clusters by diagonalizing the Hamiltonian in the basis of many-electron Bloch states. The results for the energy spectrum and eigenfunctions of the ground state and low-lying excited states are presented. Also, mean field calculations of the two-dimensional single-band Hubbard model and Cu-O lattice model (three-band Hubbard model) are carried out for various physical quantities including the energy, occupation probability, staggered magnetization, momentum distribution Fermi surface and density of states, by using a projection operator formalism.
To develop a systematic approach to solving many-electron problems, the many-particle partition function for the free electron gas system is explored using a cumulant expansion scheme. Starting from the ground state, the partition function can be approximated to any order in terms of excitation energy. Its application to interacting systems such as the Anderson model and the Hubbard model is briefly discussed. / Ph. D.
|
65 |
Magnetic anisotropy in nanostructuresEisenbach, Markus January 2001 (has links)
No description available.
|
66 |
Band to Mott transition in the infinite dimensional Holstein modelHague, James P. January 2001 (has links)
No description available.
|
67 |
Correlated electrons in heavy fermion and double exchange systemsGreen, Alexander Christopher Maurice January 1999 (has links)
No description available.
|
68 |
Etats excités en théorie de la fonctionnelle de la densité pour les ensembles : du modèle de Hubbard à l’hamiltonien exact avec séparation de portée / Excited states in ensemble density functional theory : from Hubbard model to exact Hamiltonian with range separationDeur, Killian 19 September 2018 (has links)
Les travaux présentés dans ce manuscrit de thèse peuvent être divisés en deux parties. Dans une première partie, nous nous sommes intéressé à une extension multiconfigurationnelle de la théorie de la fonctionnelle de la densité (DFT) par l'intermédiaire d'une séparation de portée permettant un traitement hybride entre DFT et fonction d'onde multiconfigurationnelle « state-averaged ». Ainsi, nous récupérons en même temps la corrélation dynamique et la corrélation statique. De plus, cette étude est réalisée en considérant la DFT pour les ensembles afin de considérer une alternative à la méthode usuelle utilisée (DFT dépendante du temps) pour la détermination des états excités d'une molécule, évitant ainsi certains problèmes théoriques rencontrés avec cette approche. En particulier, les intersections coniques entre états excités nous intéressent particulièrement car il s'agit de cas pour lesquels une approche multiconfigurationnelle est primordiale. Dans une seconde partie, le développement de nouvelles fonctionnelles est réalisé sur le dimère de Hubbard asymétrique afin de tester de nouvelles approximations et d'étudier plus en détail les processus auto-cohérents. De plus, des couplages non-adiabatiques sont calculés en utilisant des énergies déterminées dans le cadre de la DFT pour les ensembles ayant la particularité de ne pas être dépendant du temps. / This thesis manuscript can be divided in two parts. In the first one, we are interested in a multiconfigurational extension for the density functional theory (DFT) including a range separation to deal with a hybrid theory between DFT and state-averaged wave function theory. In this case, we recover, at the same time, the dynamical correlation and the static correlation. Moreover, this study is performed considering the ensemble DFT to use an alternative to the usual method (time-dependent DFT) to describe the excited states of a molecule, avoiding some theoretical problems known with this approach. Particularly, conical intersections between excited states are interesting because a multiconfigurational approach is necessary. In the second part, new functionals development are performed and applied on the non-symmetric Hubbard dimer in order to test new approximations and to study more in detail self-consistency processes. In addition, non-adiabatic couplings are calculated using energies from ensemble DFT framework without time-dependence.
|
69 |
A Unitary Perturbation Theory Approach to Real-Time Evolution in the Hubbard ModelKreye, Manuel 23 October 2019 (has links)
No description available.
|
70 |
Weak-coupling instabilities of two-dimensional lattice electronsBinz, Benedikt 15 April 2002 (has links) (PDF)
Les systèmes électroniques bidimensionnels sont d'une grande actualité tout particulièrement depuis la découverte de la supraconductivité à haute température. Ici, on se restreint à l'étude d'un modèle de Hubbard étendu, à la limite d'un couplage faible. En général, le gaz électronique subit une instabilité supraconductrice même sans phonons. Cependant, dans le cas spécial d'une bande demi-remplie, la surface de Fermi est emboîtée et se trouve à une singularité de Van Hove. Cette situation conduit à une compétition entre six instabilités différentes. Outre la supraconductivité en onde $s$ et $d$, on trouve des ondes de densités de spin et de charge ainsi que deux phases qui sont caractérisées par des courants circulaires de charge et de spin respectivement. Le formalisme du groupe de renormalisation est présenté en reliant l'idée de la "< sommation parquet "> au concept plus moderne de l'action effective de Wilson. Comme résultat on obtient un diagramme de phases riche en fonction de l'interaction du modèle. Ce diagramme de phase est exact dans la limite d'une interaction infiniment faible, puisque dans ce cas les lignes de transitions sont fixées par des symétries du modèle. Les comportements à basse température de la susceptibilité de spin ainsi que de la compressibilité de charge complètent l'image physique de ces instabilités. Il s'avère que la surface de Fermi à une tendence générale de se déformer spontanément, mais l'emboîtement n'est pas détruit. En résumé, le modèle de Hubbard à couplage faible reproduit deux propriétés essentielles des cuprates: une phase antiferromagnetique à demi remplissage et la supraconductivité en onde $d$ dans le cas dopé. Mais elle n'éxplique pas les propriétés inhabituelles de l'état métallique dans le régime sous-dopé. Une extension systématique de l'approche perturbative pourrait aider à mieux comprendre ces propriétés, mais reste difficile puisque les techniques nécessaires ne sont pas encore complètement développées.
|
Page generated in 0.0601 seconds