• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Approach to Automatic and Human Speech Recognition Using Ear-Recorded Speech

Johnston, Samuel John Charles, Johnston, Samuel John Charles January 2017 (has links)
Speech in a noisy background presents a challenge for the recognition of that speech both by human listeners and by computers tasked with understanding human speech (automatic speech recognition; ASR). Years of research have resulted in many solutions, though none so far have completely solved the problem. Current solutions generally require some form of estimation of the noise, in order to remove it from the signal. The limitation is that noise can be highly unpredictable and highly variable, both in form and loudness. The present report proposes a method of recording a speech signal in a noisy environment that largely prevents noise from reaching the recording microphone. This method utilizes the human skull as a noise-attenuation device by placing the microphone in the ear canal. For further noise dampening, a pair of noise-reduction earmuffs are used over the speakers' ears. A corpus of speech was recorded with a microphone in the ear canal, while also simultaneously recording speech at the mouth. Noise was emitted from a loudspeaker in the background. Following the data collection, the speech recorded at the ear was analyzed. A substantial noise-reduction benefit was found over mouth-recorded speech. However, this speech was missing much high-frequency information. With minor processing, mid-range frequencies were amplified, increasing the intelligibility of the speech. A human perception task was conducted using both the ear-recorded and mouth-recorded speech. Participants in this experiment were significantly more likely to understand ear-recorded speech over the noisy, mouth-recorded speech. Yet, participants found mouth-recorded speech with no noise the easiest to understand. These recordings were also used with an ASR system. Since the ear-recorded speech is missing much high-frequency information, it did not recognize the ear-recorded speech readily. However, when an acoustic model was trained low-pass filtered speech, performance improved. These experiments demonstrated that humans, and likely an ASR system, with additional training, would be able to more easily recognize ear-recorded speech than speech in noise. Further speech processing and training may be able to improve the signal's intelligibility for both human and automatic speech recognition.
2

Probabilistic Modelling of Hearing : Speech Recognition and Optimal Audiometry

Stadler, Svante January 2009 (has links)
<p>Hearing loss afflicts as many as 10\% of our population.Fortunately, technologies designed to alleviate the effects ofhearing loss are improving rapidly, including cochlear implantsand the increasing computing power of digital hearing aids. Thisthesis focuses on theoretically sound methods for improvinghearing aid technology. The main contributions are documented inthree research articles, which treat two separate topics:modelling of human speech recognition (Papers A and B) andoptimization of diagnostic methods for hearing loss (Paper C).Papers A and B present a hidden Markov model-based framework forsimulating speech recognition in noisy conditions using auditorymodels and signal detection theory. In Paper A, a model of normaland impaired hearing is employed, in which a subject's pure-tonehearing thresholds are used to adapt the model to the individual.In Paper B, the framework is modified to simulate hearing with acochlear implant (CI). Two models of hearing with CI arepresented: a simple, functional model and a biologically inspiredmodel. The models are adapted to the individual CI user bysimulating a spectral discrimination test. The framework canestimate speech recognition ability for a given hearing impairmentor cochlear implant user. This estimate could potentially be usedto optimize hearing aid settings.Paper C presents a novel method for sequentially choosing thesound level and frequency for pure-tone audiometry. A Gaussianmixture model (GMM) is used to represent the probabilitydistribution of hearing thresholds at 8 frequencies. The GMM isfitted to over 100,000 hearing thresholds from a clinicaldatabase. After each response, the GMM is updated using Bayesianinference. The sound level and frequency are chosen so as tomaximize a predefined objective function, such as the entropy ofthe probability distribution. It is found through simulation thatan average of 48 tone presentations are needed to achieve the sameaccuracy as the standard method, which requires an average of 135presentations.</p>
3

Probabilistic Modelling of Hearing : Speech Recognition and Optimal Audiometry

Stadler, Svante January 2009 (has links)
Hearing loss afflicts as many as 10\% of our population.Fortunately, technologies designed to alleviate the effects ofhearing loss are improving rapidly, including cochlear implantsand the increasing computing power of digital hearing aids. Thisthesis focuses on theoretically sound methods for improvinghearing aid technology. The main contributions are documented inthree research articles, which treat two separate topics:modelling of human speech recognition (Papers A and B) andoptimization of diagnostic methods for hearing loss (Paper C).Papers A and B present a hidden Markov model-based framework forsimulating speech recognition in noisy conditions using auditorymodels and signal detection theory. In Paper A, a model of normaland impaired hearing is employed, in which a subject's pure-tonehearing thresholds are used to adapt the model to the individual.In Paper B, the framework is modified to simulate hearing with acochlear implant (CI). Two models of hearing with CI arepresented: a simple, functional model and a biologically inspiredmodel. The models are adapted to the individual CI user bysimulating a spectral discrimination test. The framework canestimate speech recognition ability for a given hearing impairmentor cochlear implant user. This estimate could potentially be usedto optimize hearing aid settings.Paper C presents a novel method for sequentially choosing thesound level and frequency for pure-tone audiometry. A Gaussianmixture model (GMM) is used to represent the probabilitydistribution of hearing thresholds at 8 frequencies. The GMM isfitted to over 100,000 hearing thresholds from a clinicaldatabase. After each response, the GMM is updated using Bayesianinference. The sound level and frequency are chosen so as tomaximize a predefined objective function, such as the entropy ofthe probability distribution. It is found through simulation thatan average of 48 tone presentations are needed to achieve the sameaccuracy as the standard method, which requires an average of 135presentations.

Page generated in 0.0796 seconds