• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 11
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Constitutive heterochromatin in human meiosis

Driscoll, Daniel John January 1983 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
22

AUTORADIOGRAPHIC AND IMMUNOFLUORESCENT DETECTION OF LOW CONCENTRATIONS OF ACTINOMYCIN D BOUND TO HUMAN METAPHASE CHROMOSOMES.

BROTHMAN, ARTHUR RICHARD. January 1982 (has links)
The binding of low concentrations of actinomycin D (Act D) to fixed human metaphase chromosomes was studied using both autoradiographic and immunofluorescent techniques. At the concentration range of 0.001 - 0.1 μg/ml Act D is known to selectively inhibit rRNA synthesis. Although it was previously suggested that at these low concentrations Act D would selectively bind to the ribosomal cistrons, evidence also exists that the drug binds to non-ribosomal DNA, and inhibits rRNA transcription in an indirect fashion. Because of the conflicting data on Act D binding and a lack of focus on biologically relevant concentrations of drug, it was decided to systematically investigate the distribution of the drug binding in low concentrations to chromosomes from 72-hr human lymphocyte cultures. Autoradiographic detection of [³H]Act D bound to chromosomes showed no selective binding of the drug at concentrations that maximally inhibit rRNA synthesis. A new technique was employed using Formvar and potassium chromium sulfate as a pretreatment to autoradiography. This technique permitted simultaneous detection of silver grains and chromosome identification by G-banding. With autoradiographic exposure times of 1 and 7 days, there was a positive correlation of autoradiographic grains with chromosome length. To increase sensitivity in detection of Act D bound to chromosomes, a specific anti-Act D antibody was generated in rabbits. Antibody avidity was evaluated on the basis of a rapid charcoal assay. This charcoal assay was then used in development of a radioimmunoassay for Act D which is sensitive in quantitating the drug down to 0.005 μg/ml. The anti-Act D antibody was characterized to be IgG, and was shown to be specific for the pentapeptide lactone portion of the Act D molecule. Indirect immunofluorescence of Protein A-purified IgG containing anti-Act D was used to detect drug bound to fixed human chromosomes. The antibody was shown to be specific for drug bound to chromatin. When 0.1 μg/ml Act D was bound to chromosomes, the drug was observed bound throughout the genome, with no selective binding at the ribosomal cistrons. This confirms the autoradiographic data and supports the model of extranucleolar regulation of rRNA synthesis. Preliminary results suggest that Act D binds to GC-rich DNA, since an R-banding pattern was observed in 5% of the immunofluorescent metaphases examined.
23

Molecular analysis of BRAF and microsatellite analysis of chromosome 14q in astrocytic tumors.

January 2004 (has links)
Chan Ching Yin. / Thesis submitted in: October 2003. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 197-221). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Abstract --- p.iii / Abstract in Chinese --- p.vi / List of abbreviations --- p.ix / List of tables --- p.xv / List of figures --- p.xvi / Contents --- p.xviii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1. --- What are astrocytic tumors? --- p.1 / Chapter 1.1.1. --- Histological characteristics and classification --- p.2 / Chapter 1.1.2. --- Epidemiology --- p.2 / Chapter 1.1.3. --- Treatment and patient survival --- p.4 / Chapter 1.2. --- "Cytogenetics, molecular genetics and epigenetics of astrocytic tumors" --- p.6 / Chapter 1.2.1. --- Cytogenetics --- p.6 / Chapter 1.2.2. --- Genetic imbalances --- p.7 / Chapter 1.2.3. --- Tumor suppressor genes --- p.13 / Chapter 1.2.4. --- Oncogenes --- p.22 / Chapter 1.2.5. --- Primary and secondary GBMs --- p.26 / Chapter 1.3. --- Major pathways involved in astrocytic tumorigenesis --- p.30 / Chapter 1.3.1. --- Cell cycle dysregulation and suppression of apoptosis --- p.30 / Chapter 1.3.2. --- Promotion of proliferation and survival --- p.33 / Chapter 1.4. --- BRAF mutation in human cancers --- p.38 / Chapter 1.5. --- Other CNS tumors included in the current study --- p.52 / Chapter 2. --- Aims of study --- p.61 / Chapter 3. --- Materials and methods --- p.64 / Chapter 3.1. --- Clinical materials --- p.64 / Chapter 3.2. --- Cell lines --- p.75 / Chapter 3.3. --- Cell culture --- p.77 / Chapter 3.4. --- DNA extraction --- p.78 / Chapter 3.4.1. --- Pre-treatment of samples --- p.78 / Chapter 3.4.2. --- Cell lysis and protein removal --- p.80 / Chapter 3.4.3. --- Precipitation of DNA --- p.81 / Chapter 3.4.4. --- Determination of DNA concentration --- p.81 / Chapter 3.5. --- Mutation analysis of BRAF by cycle sequencing --- p.83 / Chapter 3.5.1. --- Amplification of BRAF exons --- p.83 / Chapter 3.5.2. --- Cycle sequencing and automated gel electrophoresis --- p.84 / Chapter 3.6. --- Immunohistochemistry of B-Raf and GFAP --- p.87 / Chapter 3.6.1. --- Pre-treatment of samples --- p.87 / Chapter 3.6.2. --- Detection of B-Raf and GFAP antigens by ABC method --- p.88 / Chapter 3.6.3. --- Controls --- p.90 / Chapter 3.7. --- Quantification of EGFR gene dosage by TaqMan based real-time PCR --- p.91 / Chapter 3.7.1. --- Preparation of gene constructs --- p.92 / Chapter 3.7.2. --- Primers and TaqMan probes --- p.93 / Chapter 3.7.3. --- Experimental condition and PCR program --- p.95 / Chapter 3.7.4. --- DNA standards --- p.95 / Chapter 3.7.5. --- Controls --- p.96 / Chapter 3.7.6. --- Experimental layout --- p.96 / Chapter 3.8. --- Microsatellite analysis of chromosome 14q in astrocytic tumors --- p.97 / Chapter 4. --- Results --- p.101 / Chapter 4.1. --- Mutation analysis of BRAF --- p.101 / Chapter 4.2. --- Immunohistochemistry of B-Raf protein --- p.107 / Chapter 4.3. --- Quantification of EGFR gene dosage --- p.117 / Chapter 4.4. --- Correlation between EGFR dosage and BRAF mutation --- p.128 / Chapter 4.5. --- Correlation between EGFR dosage and B-Raf expression --- p.129 / Chapter 4.6. --- Microsatellite analysis of chromosome 14q in astrocytic tumors --- p.131 / Chapter 5. --- Discussions --- p.149 / Chapter 5.1. --- BRAF mutations as common events in human cancers --- p.149 / Chapter 5.2. --- BRAF mutation in CNS tumor specimens --- p.150 / Chapter 5.2.1. --- Tumorigenic effect of the V599E substitution --- p.153 / Chapter 5.2.2. --- V599E B-Raf mutant activation independent of Ras activation --- p.155 / Chapter 5.2.3. --- Autocrine stimulation of Ras signaling in V599E B-Raf mutant --- p.156 / Chapter 5.3. --- BRAF expression in astrocytic tumors --- p.159 / Chapter 5.4. --- Mutually exclusive pattern between EGFR amplification and BRAF expression --- p.161 / Chapter 5.4.1. --- Similar effect of EGFR activation and B-Raf activation --- p.163 / Chapter 5.4.2. --- Mutual effects between Ras/Raf/Mek/Erk and Akt signaling --- p.164 / Chapter 5.5. --- Microsatellite analysis of chromosome 14q in human cancers --- p.167 / Chapter 5.6. --- Microsatellite analysis of chromosome 14q in astrocytic tumors --- p.170 / Chapter 5.6.1. --- Finer mapping of common regions of deletion --- p.170 / Chapter 5.6.2. --- Genes within the common regions of deletion --- p.173 / Chapter 5.6.3. --- Overlapping deletion regions in astrocytic and non-CNS tumors --- p.186 / Chapter 6. --- Further studies --- p.190 / Chapter 6.1. --- Role of BRAF alterations in astrocytic tumors --- p.190 / Chapter 6.2. --- B-Raf expression in astrocytic tumors and correlation with EGFR overexpression --- p.193 / Chapter 6.3. --- Microsatellite analysis of 14q in astrocytic tumors --- p.194 / Chapter 7. --- Conclusions --- p.195 / Chapter 8. --- References --- p.198
24

Involvement of chromosome 20q in the immortalization of human ovarian surface epithelial cells

Chung, Chin-man., 鍾展雯. January 2004 (has links)
published_or_final_version / Medical Sciences / Master / Master of Medical Sciences
25

G₂ chromosomal radiosensitivity in childhood and adolescent cancer survivors and their offspring /

Curwen, Gillian B. January 2008 (has links)
Thesis (Ph.D.) - University of St Andrews, January 2008.
26

The distribution of genetic markers and Q-band chromosomal heteromorphisms in the Kuwaiti population

Al-Nassar, Khaled Eid January 1979 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu). / The distribution of variants of fourteen genetic and fourteen cytogenetic markers is investigated in samples from two Bedouin tribes, the Ajman (n = 52) and the Suluba (n = 52) and from the general population of Kuwait (n = 89). Typical of the many tribal populations in the Arabian peninsula, both Ajman and Suluba are socially isolated from each other. There is little documentation on the ancestral descent of both tribes. However, oral tradition regards Ajman as a deep-rooted Arabian tribe, while the Suluba is thought by some to have originated from the followers of the Crusade camps. The validity of the history of ancestral descent of both tribes is substantiated by a comparison of the distribution of several genetic markers with those of other peninsular communities, and by genetic distance measures between them, the peninsula Arabs of the South-West, and a European population (Italians). Distance measures were calculated by two different methods. Both genetic and cytogenetic marker data obtained from the three Kuwaiti communities contribute significantly to the sparse genetic information on the peninsular populations, and illustrate the degree of genetic microheterogeniety between these communities which was brought about by some social factors that caused their isolation. Gene flow from the neighboring East African populations is evident from the allelic distribution of certain systems such as the Duffy and the Rhesus. Evidence is presented which supports the speculation regarding the prevalence of K of the Kell system and M and S of the MNSs system in the indigeneous peninsular populations. A new salivary amylase isozyrne, Amy K1, was detected in a subject of probable Asiatic Indian descent sampled in Kuwait. Q-band chromosomal heteromorphisms were scored in the three sampled Kuwaiti communities. There was no statistical significance in the differences in frequencies of these heteromorphisms between the three samples. Genetic distances between the Kuwaiti communities and others from the literature were calculated on the basis of Q-band heteromorphic loci. The distances demonstrate the pitfalls in using absolute frequencies of chromosomal variants scored by different research groups for comparative studies. Large Y chromosome was present at high frequencies in the three Kuwaiti communities and was highest among members of the Ajman tribe. This finding suggests that the prevalance of large Y may be a distinguishing cytogenetic feature of the indigenous peninsular populations. Small Y was present in the sample from the general population, but not detected in either sample from the tribal communities. The differences in frequencies of Y chromosome variants between the three sampled communities was found to be statistically significant. Investigation of the 9qh region with the G-11 technique has shown an absence of inversions, partial and complete, of this heteromorphic region in the sample from the general population of Kuwait.
27

G₂ chromosomal radiosensitivity in childhood and adolescent cancer survivors and their offspring

Curwen, Gillian B. January 2008 (has links)
It is increasingly recognised that individual risk of cancer may be related to genetically determined differences in the ability of cells to identify and repair DNA damage. Cell cycle based assays of chromosomal radiosensitivity provide the greatest power for discriminating differences in response to DNA damage and it has been suggested that individuals who are genetically susceptible to cancer show increased chromosomal radiosensitivity. The relationship between chromosomal radiosensitivity and early onset cancer was investigated in a population of Danish survivors of childhood and adolescent cancer and a control group comprising of their partners using the G₂ assay of chromosomal radiosensitivity. Heritability was also examined in the offspring. No significant differences in radiosensitivity profiles were found between partner controls and either the cancer survivors or offspring. However, when compared to the Westlakes Research Institute control population, significant differences were observed with the cancer survivors (P = 0.002) and offspring (P < 0.001), supporting an association of chromosomal radiosensitivity with cancer predisposition. Heritability studies suggested the majority of phenotypic variance of chromosomal radiosensitivity was attributable to a putative major gene locus with dominant effect. Since G2 chromosomal radiosensitivity indirectly measures the ability of cells to repair DNA damage induced by ionising radiation exposure, variants in DNA repair genes may explain inter-individual variation observed. Sixteen polymorphisms in nine genes from four DNA repair pathways were investigated. Genotype frequencies at the Asp148Glu polymorphism were associated with childhood cancer in survivors. Analysis of variance and FBAT analysis suggested significant associations at both the Thr241Met and Ser326Cys polymorphism sites with G₂ radiosensitivity, but neither remained significant after multiple-test adjustment. This study invites further exploration of the predictive capacity of G₂ chromosomal radiosensitivity in cancer predisposition. Clearly, further work is needed to correlate radiosensitivity with genetic polymorphisms, which may underlie cancer susceptibility and variation in radiosensitivity.
28

Generation of a human gene index and its application to disease candidacy.

Christoffels, Alan January 2001 (has links)
<p>With easy access to technology to generate expressed sequence tags (ESTs), several groups have sequenced from thousands to several thousands of ESTs. These ESTs benefit from consolidation and organization to deliver significant biological value. A number of EST projects are underway to extract maximum value from fragmented EST resources by constructing gene indices, where all transcripts are partitioned into index classes such that transcripts are put into the same index class if they represent the same gene. Therefore a gene index should ideally represent a non-redundant set of transcripts. Indeed, most gene indices aim to reconstruct the gene complement of a genome and their technological developments are directed at achieving this goal. The South African National Bioinformatics Institute (SANBI), on the other hand, embarked on the development of the sequence alignment and consensus knowledgebase (STACK) database that focused on the detection and visualisation of transcript variation in the context of developmental and pathological states, using all publicly available ESTs. Preliminary work on the STACK project employed an approach of partitioning the EST data into arbitrarily chosen tissue categories as a means of reducing the EST sequences to manageable sizes for subsequent processing. The tissue partitioning provided the template material for developing error-checking tools to analyse the information embedded in the error-laden EST sequences. However, tissue partitioning increases redundancy in the sequence data because one gene can be expressed in multiple tissues, with the result that multiple tissue partitioned transcripts will correspond to the same gene.</p> <p><br /> Therefore, the sequence data represented by each tissue category had to be merged in order to obtain a comprehensive view of expressed transcript variation across all available tissues. The need to consolidate all EST information provided the impetus for developing a STACK human gene index, also referred to as a whole-body index. In this dissertation, I report on the development of a STACK human gene index represented by consensus transcripts where all constituent ESTs sample single or multiple tissues in order to provide the correct development and pathological context for investigating sequence variation. Furthermore, the availability of a human gene index is assessed as a diseasecandidate gene discovery resource. A feasible approach to construction of a whole-body index required the ability to process error-prone EST data in excess of one million sequences (1,198,607 ESTs as of December 1998). In the absence of new clustering algorithms, at that time, we successfully ported D2_CLUSTER, an EST clustering algorithm, to the high performance shared multiprocessor machine, Origin2000. Improvements to the parallelised version of D2_CLUSTER included: (i) ability to cluster sequences on as many as 126 processors. For example, 462000 ESTs were clustered in 31 hours on 126 R10000 MHz processors, Origin2000. (ii) enhanced memory management that allowed for clustering of mRNA sequences as long as 83000 base pairs. (iii) ability to have the input sequence data accessible to all processors, allowing rapid access to the sequences. (iv) a restart module that allowed a job to be restarted if it was interrupted. The successful enhancements to the parallelised version of D2_CLUSTER, as listed above, allowed for the processing of EST datasets in excess of 1 million sequences. An hierarchical approach was adopted where 1,198,607 million ESTs from GenBank release 110 (October 1998) were partitioned into &quot / tissue bins&quot / and each tissue bin was processed through a pipeline that included masking for contaminants, clustering, assembly, assembly analysis and consensus generation. A total of 478,707 consensus transcripts were generated for all the tissue categories and these sequences served as the input data for the generation of the wholebody index sequences. The clustering of all tissue-derived consensus transcripts was followed by the collapse of each consensus sequence to its individual ESTs prior to assembly and whole-body index consensus sequence generation. The hierarchical approach demonstrated a consolidation of the input EST data from 1,198607 ESTs to 69,158 multi-sequence clusters and 162,439 singletons (or individual ESTs). Chromosomal locations were added to 25,793 whole-body index sequences through assignment of genetic markers such as radiation hybrid markers and g&eacute / n&eacute / thon markers. The whole-body index sequences were made available to the research community through a sequence-based search engine (http://ziggy.sanbi.ac.za/~alan/researchINDEX.html).</p>
29

Variation at two hypervariable loci on chromosome 16p in the multicultural population of Montreal

Marshall-Shapiro, Adele H. January 1989 (has links)
No description available.
30

The role of EWS/FLI-1 fusion gene in Ewing's sarcoma

Chan, David Wai, 1968- January 2001 (has links)
Abstract not available

Page generated in 0.0564 seconds