• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tracking Low Temperature Tectonism of the St. Lawrence Platform and Humber Zone, Southern Quebec Appalachians through Apatite and Zircon (U-Th)/He Thermochronology

Emberley, Justin January 2016 (has links)
The St. Lawrence Platform (SLP) and Humber Zone (HZ) of the southern Quebec Appalachians has historically been explored as a potential hydrocarbon reservoir. Extensive vitrinite reflectance studies on the basin resolved the degree of thermal maturation yet the timing of the thermal maximum is not well undertood. Determining the timing of such low temperature events can allow for a better understanding of the shallow crustal processes that may have allowed for the generation and entrapment of oil and gas. We have employed apatite (AHe) and zircon (ZHe) (U-Th)/He thermochronmetry across a network of late Cambrian to late Ordovician siliciclastic and Grenvillian basement samples in order to resolve the history within the ~210-35°C window. Single crustal dates from individual samples show age dispersion by as much as 300 m.y. with a strong positive to negative correlation with increasing eU concentration. A similar positive correlation can be observed when significant intra-sample grain size variation is present. AHe and ZHe data in the southwestern portion of the basin, near Montreal, allow for thermal maxima of up to 200°C to occur either during the late Ordovician, as a result of the Taconic orogeny, or from the continued sedimentation into the Devonian as a result of the Acadian orogeny. Regional burial trends deduced from these thermal maxima along with local paleo-geothermal gradients indicate that if sedimentation continued after the late Ordovician there was no significant increase in burial in southwestern portion of the SLP as previously suggested. Maximum heating is followed by a protracted cooling through the ZHe partial retention zone (PRZ) into the late Jurassic and early Cretaceous where the cooling rate increases by an order of magnitude through the AHe PRZ until ca. 100 Ma. The timing of this accelerated cooling is coeval with the passage of the Great Meteor Hot Spot across the area; the cooling may be a result of increased erosion from thermal uplift. Within the HZ, both the external and internal sections experienced rapid cooling through the Silurian after the Taconic thermal maximum. The timing of relatively rapid cooling coincides with documented normal faulting and back-thrusting in the orogen, which is the likely cause of exhumation. The HZ witnessed protracted cooling through the late Jurassic, when there is a one order of magnitude increase in cooling rate until surface conditions are attained. Increased recognition of these low temperature events has augmented our understanding of the evolution of accretionary orogens and consequently reduces the risks associated with oil and gas exploration.
2

PALEOGEOGRAPHIC RECONSTRUCTUION OF THE ST. LAWRENCE PROMONTORY, WESTERN NEWFOUNDLAND

Allen, John Stefan 01 January 2009 (has links)
Neoproterozoic-Early Cambrian continental rifting related to the breakup of the supercontinent Rodinia framed the continental margin of eastern Laurentia and the departing cratons around the opening Iapetus Ocean. The result of continental extension was the production of a zig-zag set of promontories and embayments on the eastern Laurentian margin defined by northeast-trending rift segments offset by northwesttrending transform faults. The St. Lawrence promontory defines the Laurentian margin in western Newfoundland. There, Neoproterozoic-Carboniferous clastic, volcanic, and carbonate successions record protracted continental rifting and passive-margin thermal subsidence followed by destruction of the margin during the early, middle, and late Paleozoic Appalachian orogenic cycles. Palinspastic restoration of deformed Paleozoic strata by a set of balanced cross sections resolves the structure, stratigraphy, and timing of Paleozoic tectonic events on the St. Lawrence promontory. Synrift and post-rift subsidence profiles, as well as abrupt along-strike variations in the age, thickness, facies, and the palinspastically restored extent of synrift and post-rift stratigraphy, indicate the St. Lawrence promontory was founded upon a low-angle detachment rift system. Upperplate margins, lower-plate margins, and transform faults that bound zones of oppositely dipping low-angle detachments are recognized along specific segments of the promontory. A detailed U-Pb and Lu-Hf isotopic detrital zircon study elucidates the identity of specific cratons conjugate to the St. Lawrence promontory in the pre-rift configuration of Rodinia. Approximately 510 zircons from 9 samples collected from basement and overlying Early Cambrian synrift rocks in Newfoundland were analyzed by LA-ICP-MS for U-Pb ages and Hf isotopic ratios. Synrift samples yielded ages ranging from 3605 Ma to 544 Ma with maximum age frequencies of 1000-1200 Ma (Grenville), 1350-1450 Ma (Pinware), and 2650-2800 Ma (Superior), while two basement samples yielded U-Pb ages of 1044 Ma and 1495 Ma. 177Hf/176Hf isotopic ratios of ca.1000 Ma, 1200 Ma, and 1400- 1600 Ma zircons from Newfoundland basement and synrift rocks are a close match to reported 177Hf/176Hf ratios for Baltican zircons of the same vintage, suggesting that Baltica was conjugate to the St. Lawrence promontory.

Page generated in 0.0369 seconds