• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processing, Characterization and Modeling Carbon Nanotube Modified Interfaces in Hybrid Polymer Matrix Composites

Truong, Hieu 1990- 14 March 2013 (has links)
Multifunctional hybrid composites are proposed as novel solutions to meet the demands in various industrial applications ranging from aerospace to biomedicine. The combination of carbon fibers and/or fabric, metal foil and carbon nanotubes are utilized to develop such composites. This study focuses on processing of and fracture toughness characterization of the carbon fiber reinforced polymer matrix composites (PMC) and the CNT modified interface between PMC and a metal foil. The laminate fabrication process using H-VARTM, and the mode I interlaminar fracture toughness via double cantilever beam (DCB) tests at both room temperature and high temperature are conducted. The cross-sections and fracture surfaces of the panels are characterized using optical and scanning electron microscopes to verify the existence of CNTs at the interface before and after fracture tests. The experimental results reveal that CNT’s improve bonding at the hybrid interfaces. Computational models are developed to assist the interpretation of experimental results and further investigate damage modes. In this work, analytical solutions to compute the total strain energy release rate as well as mode I and mode II strain energy release rates of asymmetric configurations layups are utilized. Finite element models are developed in which the virtual crack closure technique is adopted to calculate strain energy release rates and investigate the degree and effect of mode-mixity. Results from analytical solutions agree well with each other and with results obtained from finite element models.
2

COFFEE: Context Observer for Fast Enthralling Entertainment

Lenz, Anthony M 01 June 2014 (has links) (PDF)
Desktops, laptops, smartphones, tablets, and the Kinect, oh my! With so many devices available to the average consumer, the limitations and pitfalls of each interface are becoming more apparent. Swimming in devices, users often have to stop and think about how to interact with each device to accomplish the current tasks at hand. The goal of this thesis is to minimize user cognitive effort in handling multiple devices by creating a context aware hybrid interface. The context aware system will be explored through the hybridization of gesture and touch interfaces using a multi-touch coffee table and the next-generation Microsoft Kinect. Coupling gesture and touch interfaces creates a novel multimodal interface that can leverage the benefits of both gestures and touch. The hybrid interface is able to utilize the more intuitive and dynamic use of gestures, while maintaining the precision of a tactile touch interface. Joining these two interfaces in an intuitive and context aware way will open up a new avenue for design and innovation.

Page generated in 0.0444 seconds