Spelling suggestions: "subject:"cybrid sterility"" "subject:"cybrid terility""
1 |
Mapování genů ovlivňujících poddruhově specifické funkce meiotického genu Prdm9 / Maping of genes modifying the subspecies-specific roles of the meiotic gene Prdm9Škaloudová, Eliška January 2015 (has links)
The PRDM9 (PR domain containing 9) protein is an epigenetic factor that trimethylates lysine 4 of histone H3 and thereby determines the future meiotic double-strand breaks - sites important for proper segregation of homologous chromosomes. Males of the Mus musculus domesticus (Mmd) origin with homozygous deletion in Prdm9 (Prdm9-/- ) are sterile with a complete arrest in meiotic prophase I, in contrast to the same mutant males of the M. m. musculus (Mmm) subspecies. The aim of this diploma thesis was to identify the genomic loci responsible for the phenotypic difference of these Prdm9-/- males. The major research tool was a population of 182 Mmm x Mmd Prdm9-/- males. The mapping method of quantitative trait loci (QTLs) was based on relating the genotypes of single-nucleotide and microsatellite polymorphisms to the observed phenotypes. At least two QTLs on Chr X were identified. The Mmm alleles of these QTLs reduced fertility of Prdm9-/- males. Both QTLs were confirmed and narrowed down using two types of subconsomic strains. It was not possible to confirm other QTLs, particularly on autosomes. This QTL mapping is the first step towards the identification of genes that modify the resulting phenotype of Prdm9-/- animals. This identification should help designing studies of human infertility that...
|
2 |
Genetické interakce genu Prdm9 / Genetic interactions of the Prdm9 geneŠebestová, Lenka January 2017 (has links)
The Prdm9 gene (PR domain containing 9, Meisetz, Hybrid sterility 1) encodes enzyme that trimethylates histone 3 on lysines 4 and 36. These methylation marks determine the positions of DNA double-strand breaks that are repaired by meiotic homologous recombination. In this study, we assayed genetic interactions of Prdm9 with two genes important for spermatogenesis - Mili (Piwil2) involved in piRNA biogenesis and Mybl1 encoding transcription factor that regulates many genes important for prophase I, including piRNA precursors. We crossed laboratory mice carrying mutation in Prdm9 with heterozygotes for mutation in Mybl1 or Mili, and created compound heterozygotes and, in case of Mybl1, also double homozygotes. We assessed body weight and male fertility parameters (weight of testes, sperm count, malformed sperm, percentage of tubules containing spermatocytes and of abnormal nuclei of pachytene spermatocytes) of these mice and compared them to controls. We also investigated the effect of Mybl1 and Mili mutations on fecundity of F1 intersubspecific hybrids. Our results revealed possible interactions of Prdm9 and Mybl1 in the laboratory mouse. Decreased gene dosage of Mybl1 reduced fertility of intersubspecific F1 hybrids. Interaction between Prdm9 and Mili in both laboratory mouse and F1 hybrids remain...
|
3 |
Hybrid Sterility and Segregation Distortion in Drosophila pseudoobscura and Drosophila persimilisMcDermott, Shannon January 2012 (has links)
<p>Speciation has occurred countless times throughout history, and yet the genetic mechanisms that lead to speciation are still missing pieces. Here, we describe the genetics of two processes that can act alone or together to cause speciation: hybrid sterility and meiotic drive. We use the <italic>Drosophila pseudoobscura/D, persimilis</italic> species as a model system to study these processes. We expanded on a prior study and saw little variation in strength of previously known hybrid sterility alleles between distinct strains of <italic>D. persimilis</italic> and the Bogota subspecies of <italic>D. pseudoobscura</italic>. Introgression of an autosomal, noninverted hybrid sterility allele from the USA subspecies of <italic>D. pseudoobscura</italic> into <italic>D. persimilis</italic> demonstrated that the <italic>D. pseudoobscura</italic> copy of a <italic>D. persimilis</italic> hybrid sterility factor also causes hybrid male sterility in a <italic>D. pseudoobscura bogotana</italic> background. This allelism suggests that the introgressed allele is ancestral, but was lost in the Bogota lineage, or that gene flow between <italic>D. pseudoobscura</italic> USA and <italic>D. persimilis</italic> moved the sterility-conferring allele from <italic>D. persimilis</italic> into <italic>D. pseudoobscura</italic>. To further understand the genetic basis of speciation, we asked if meiotic drive in <italic>D. persimilis</italic> is associated with hybrid sterility seen in <italic>D. persimilis/D. pseudoobscura</italic> hybrids. QTL mapping of both traits along the right arm of the X chromosome, where both drive and hybrid sterility loci are found, suggest that some of the causal loci overlap and may be allelic.</p> / Dissertation
|
4 |
Meiotický efekt mutace genu MutS homolog 6 (Msh6) u dvou myších poddruhů / Meiotic effect of MutS homolog 6 (Msh6) mutation in two mouse subspeciesFusek, Karel January 2021 (has links)
To study hybrid sterility our laboratory uses mouse strains PWD/Ph (PWD), derived from Mus musculus musculus wild mice and the common laboratory strain C57BL/6J (B6) mostly of Mus musculus domesticus origin as a model. Crossing between PWD female and B6 male results in sterile male progeny. F1 hybrid males carry defects in the repair mechanisms of asymmetric double-strand DNA breaks (DSBs). Functional interplay of SPO11 and PRDM9 proteins in the meiotic prophase I is necessary for repairs. Its defect leads to incorrect synapse formation between homologous chromosomes, leading to halt in spermatogenesis and thus male sterility. The formation of DSBs and their subsequent repair is essential for first meiotic division. The working hypothesis stems from the findings in yeast model, where supposed antirecombinatorial mechanism of mismatch repair genes Msh6 and Msh2 prevents DSBs repairs during meiosis. Despite the functional mechanism of these two genes is not explicitly known, existence of similar repair system in mice is presumed. Variety of methods was implemented in this thesis. The effects of Msh6 deletion on meiotic prophase I and sperm maturation were performed by designing guide RNAs for CRISPR/Cas9 for creation of three knock-outs in B6 mice. The PCR was used to amplify regions adjacent to the...
|
5 |
Analýza vlivu genové dávky myšího speciačního genu Prdm9 na fertilitu hybridů / Analysis of dosage effect of speciation gene Prdm9 on fertility of mouse hybridsFlachs, Petr January 2018 (has links)
(eng) The phenomenon of hybrid sterility represents one of the evolutionary mechanisms that enables speciation. Only a few speciation genes have been uncovered. The only one found in mammals is Prdm9 (PR-domain 9). Data in the literature on the involvement of Prdm9 in decreased fertility of various semifertile hybrid males of house mouse subspecies were scarce before the results of this thesis were completed, despite that such males are much more frequent in nature than the fully sterile ones. Utilizing a panel of genetic tools and a battery of phenotyping tests, this thesis shows a central role of Prdm9 in fecundity of hybrids, including many fertility disorders and age dependency. Both increasing and reducing the Prdm9 gene dosage significantly elevated fertility parameters. Surprisingly, even the allele that in one copy causes full hybrid sterility increased F1 hybrid fertility when present in multiple copies. The PRDM9 protein also plays a role in identifying the sites of meiotic recombination. This study also points out the principles of allelic competition in determination of the sites of preferred recombination (hotspots), which suggests a possible link between both previously described Prdm9 roles. This thesis summarizes a set of three logically interconnected publications with the ambition...
|
6 |
Genomics and Transcriptomics of Hybrid Male Sterility Assessed in Multiple Interspecies Feline BreedsDavis, Brian W 03 October 2013 (has links)
Hybrid male sterility (HMS) is typically the first mechanism fortifying reproductive isolation resulting from genomic incompatibilities. Three interspecies feline breeds derived from domestic cat crosses to wild cat species (Asian leopard cat and African serval) manifest HMS through several generations of backcrossing before eventually regaining fertility. This work utilized 199 hybrid individuals with varying fertilities in a genome wide association study (GWAS) comprising 63,000 genome wide SNPs. Leveraging these results with whole-testis transcriptome sequencing and quantitative real-time PCR data facilitated the comparison of transcripts in sterile and fertile hybrids. This dissertation describes four loci with highly significant and fifty with moderately significant association to sterility within each individual hybrid domestic breed and combinations of breeds. These associations help identify epistatic targets for hybrid incompatibility contributing to sterility. Comparative QTL mapping between pairs of species provides a framework to describe the accumulation of clade-specific reproductive isolating loci. Detailed exploration of gene misregulation between domestic and hybrid individuals, as well as between littermate hybrids of varying fertilities outlines a pattern of expression consistent with a meiotic sex-chromosome inactivation failure in early generations and apoptotic failure in later hybrid generations. Combining comparative genomic association and transcriptomic characterization among hybrid felids of varying divergence, new insight is gained into the mechanisms of mammalian reproductive isolation.
|
7 |
Analyse génétique d'une stérilité hybride chez Arabidopsis thaliana / Genetic analysis of an hybrid sterility in Arabidopsis thalianaSimon, Matthieu 18 December 2015 (has links)
Un objectif central de la biologie évolutive est la compréhension des mécanismes qui conduisent à la formation de nouvelles espèces. Les stérilités hybrides constituent un type de barrières reproductives pouvant mener à la spéciation. Ce travail dissèque les bases génétiques d’une stérilité mâle observée chez l'hybride entre deux accessions naturelles d'Arabidopsis thaliana, Shahdara et Mr-0, lorsque Shahdara est le parent femelle. Par des approches génétiques et cytologiques, nous montrons que deux phénomènes interviennent dans cette stérilité. D'une part le cytoplasme de Shahdara induit une stérilité mâle cytoplasmique (CMS), en interaction avec plusieurs locus nucléaires. D'autre part, une létalité pollinique est due à plusieurs locus distorteurs de ségrégation (pollen killers). La stérilité de l'hybride résulte d'une liaison génétique entre les déterminants nucléaires de la CMS et les pollen killers. L'un des pollen killers a été localisé dans un intervalle de 70 Kb qui contient également des éléments nécessaires à la restauration de la CMS. Ce locus est complexe et présente de nombreuses variations structurales, notamment au niveau de gènes PPR. Ces résultats suggèrent que deux types de conflits génomiques, les distorteurs de ségrégation et la CMS, pourraient coévoluer dans des populations naturelles et conduire à l’élaboration de barrières reproductives au sein d'une même espèce. / Species differentiation and the underlying genetics of reproductive isolation are central topics in evolutionary biology. Hybrid sterility is one kind of reproductive barrier that can lead to differentiation between species. Here, we analyze the complex genetic basis of the intraspecific hybrid male sterility that occurs in offspring of two distant natural strains of Arabidopsis thaliana, Shahdara and Mr-0, with Shahdara as the female parent. Using genetic approaches as well as cytological observation of pollen viability, we demonstrate that this particular hybrid sterility results from two causes of pollen mortality. First, the Shahdara cytoplasm induces gametophytic cytoplasmic male sterility controlled by several nuclear loci. Second, several segregation distorters leading to allele-specific pollen abortion (pollen killers) operate in the hybrids. The complete sterility of the hybrid with the Shahdara cytoplasm results from the genetic linkage of the two causes of pollen mortality, i.e. CMS nuclear determinants and pollen killers. One pollen killer was localized in a 70 Kb interval which also contains restorer alleles for the CMS. This locus is complex and harbors many structural variations, particularly at PPR genes. Our results suggest that two types of genomic conflicts, CMS and segregation distorters, may coevolve in natural populations and contribute to reproductive isolation, and possibly to speciation.
|
8 |
Role histonových modifikací a genové exprese v myší spermatogenezi / The role of histone modifications and gene expression in mouse spermatogenesisKřivánková, Klára January 2019 (has links)
The production of haploid sperm is a precondition for sexual reproduction of males. PRDM9 protein is a histone methyltransferase which localizes sites of meiotic recombination in many mammals. Mouse males of the C57BL/6J (B6) strain deficient for Prdm9 (Prdm9-/- ) are sterile, while Prdm9-/- males of PWD/Ph (PWD) strain have reduced sperm count. The comparison of the distribution of trimethylation of histone 3 on lysine 36 (H3K36me3) in genome of Prdm9-/- males of these two strains will help to determine the role of this epigenetic modification on meiotic recombination and fertility of Prdm9-/- males. The second part of this thesis is focused on transgenic males. Male offspring from the first generation of B6 female and PWD male crosses (B6PF1) have reduced fertility parameters due to incompatibility of Prdm9 alleles. The fertility parameters of B6PF1 hybrids carrying CHORI-34-289M8 or RP24-346I22 transgene are even lower. The candidate gene, which participates in the reduction of fertility of the transgenic B6PF1 hybrids, was determined as the proteasome subunit encoding gene Psmb1, because its relative transcription level best correlates with sperm count. The reason of lowered fertility thus might be a defect in proteasome assembly. The investigation of the fitness of transgenic animals is...
|
9 |
Charakterizace kandidátních genů hybridní sterility Hstx1 a Hstx2 / Characterization of the Hstx1 and Hstx2 hybrid sterility candidate genesKašíková, Lenka January 2015 (has links)
Speciation, the formation of new species, is an essential evolutionary process that causes species diversity on the Earth. At the beginning of this process is the separation of two populations by a reproductive barrier that prevents gene flow between these populations. One of the mechanisms, which enable reproductive isolation, is hybrid sterility (HS). It is a mechanism of postzygotic isolation that is described in a number of eukaryotes. The first discovered gene of hybrid sterility in vertebrates is the mice gene Hst1, later identified as gene Prdm9. By genetic and molecular analysis the locus on the X chromosome was determined, whose interaction with Prdm9 causes sterility or reduced fitness in male hybrids. This locus contains two genetic factors: Hstx1, causing an abnormal morphology of spermatozoa, and Hstx2, causing an arrest in spermatogenesis in pachytene spermatocytes and sterility. In my thesis I focus on the effect of deletion of a candidate hybrid sterility gene Fmr1nb on the X chromosome. The analysis of males B6N.Fmr1nbmut with deletion variants of the Fmr1nb gene showed that Fmr1nb is one of the factors influencing spermatogenesis. An increase in morphologic abnormalities in spermatozoa occurred in males with Fmr1nb gene deletion. This phenotype is identical with Hstx1. The effect...
|
10 |
Meiotická homologní rekombinace a hybridní sterilita / Meiotic homologous recombination and hybrid sterilityGergelits, Václav January 2020 (has links)
(English) Meiotic homologous recombination, homologous chromosomes synapsis, and F1 hybrid sterility (enabling formation of species) are mutually interconnected phenomenons, one being the prerequisite to the latter. In the present thesis, these phenomenons were investigated on a genetic and mechanistic level using a mouse subspecies as a model. Noncrossovers (NCOs, gene conversions), 90% prevalent resolution of Prdm9- determined meiotic double-strand breaks (DSBs), were uniquely identified and characterized on a chromosome-wide level. The mean gene conversion tract length, based on 94 NCOs events, was calculated to be 32 bp. On a local level, the NCOs overlapped the known hotspots of PRDM9-controlled histone trimethylation and DSB formation, indicating their origin in the standard meiotic DSB repair pathway. On chromosome-wide level, NCO and CO distributions differed, in particular COs being relatively preferred over NCOs in subtelomeric regions. A specific subset of nonparental/asymmetric NCOs and COs was underrepresented in our datasets, proposing their problematic repair, hypothetically enabled by sister chromatids, and thus not contributing to indispensable homologous synapsis. Genome-wide crossover (CO) rates, genetically and mechanistically crucial ~10% of DSB repair, were proven to be...
|
Page generated in 0.0784 seconds