• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neue Ansätze in der mechanischen Fügetechnik – Festigkeitswerte und Auslegungsmöglichkeiten

Georgi, Wolf 11 January 2023 (has links)
In der vorliegenden Habilitationsschrift werden im ersten Teil bekannte aber auch ausgewählte neue Verfahren zum Fügen von Metallen mit Kunststoffen vorgestellt und miteinander verglichen. Im zweiten Teil werden verschiedene Berechnungsmöglichkeiten für die Auslegung bzw. die Nachweisführung von mechanisch gefügten Verbindungen vorgestellt. Hierbei handelt es sich ebenfalls um bekannte Konzepte als auch um neue Konzepte aus eigenen Forschungsvorhaben. Anhand der Aufbereitung dieser Konzepte in Algorithmen nach DIN 66001 und der Bereitstellung von Beispielen, welche sich auf die Algorithmen beziehen, sind diese einfach anwendbar und für die studentische Ausbildung gut geeignet.:1 Bekannte und neue Fügeverfahren im Leichtbau 1.1 Einleitung zum ersten Kapitel 1.2 Clinchen 1.3 Ultrasonic Fusion Bonding and Clinching 1.4 Clinching with a lost Ring 1.5 Blindnieten 1.6 Flow Drilling Riveting 1.7 Zusammenfassung 2 Auslegungsmöglichkeiten und Bemessungskonzepte 2.1 Einleitung zum zweiten Kapitel 2.2 Berechnung von Vollnietverbindungen nach DIN EN 1993-1-8 2.3 Berechnung von Blindnietverbindungen nach J. Grandt 2.4 Berechnung von Clinch-, Stanzniet- und Blindnietverbindungen nach der Grenznahtfestigkeit / In the first part of this habilitation thesis, known but also selected new processes for joining metals with plastics presented and compared. In the second part, various calculation options for the design and verification of mechanically joined connections are presented. These are also well-known concepts as well as new concepts from our own research projects. Based on the processing of these concepts in algorithms according to DIN 66001 and the provision of examples that refer to the algorithms, they are easy to use and well suited for student training.:1 Bekannte und neue Fügeverfahren im Leichtbau 1.1 Einleitung zum ersten Kapitel 1.2 Clinchen 1.3 Ultrasonic Fusion Bonding and Clinching 1.4 Clinching with a lost Ring 1.5 Blindnieten 1.6 Flow Drilling Riveting 1.7 Zusammenfassung 2 Auslegungsmöglichkeiten und Bemessungskonzepte 2.1 Einleitung zum zweiten Kapitel 2.2 Berechnung von Vollnietverbindungen nach DIN EN 1993-1-8 2.3 Berechnung von Blindnietverbindungen nach J. Grandt 2.4 Berechnung von Clinch-, Stanzniet- und Blindnietverbindungen nach der Grenznahtfestigkeit
2

Finite element modelling of hybrid (spot welded/bonded) joints under service conditions / Modélisation de joint hybride (soudé/collé) par éléments finis dans les conditions de service

Dang, Weidong 20 February 2015 (has links)
Le soudage par point et le collage sont largement utilisés dans la jonction des tôles, telles que l'assemblage de caisses de voiture. Récemment, le soudage par point et le collage ont été combinés pour faire le joint hybride soudé-collé, qui est utilisé pour joindre les aciers à hautes résistances et améliorer la rigidité et la résistance aux chocs des corps de voiture. Dans l'industrie, l'évaluation de la conception avant prototype nécessite des modèles fiables de comportement en termes de prédiction des comportements mécaniques. Le modèle élément finis de joint soudé-collé est un nouveau défi car il doit combiner les modèles de soudage par points et les modèles de collage.Cette thèse se concentre sur la modélisation du joint soudé-collé par de l'acier DP600 et avec l’adhésif structurel SikaPower®-498. La modélisation peur utiliser un modèle solide ou un modèle simplifié (élément coque plus élément de connexion). Le modèle solide permet de prédire le comportement de spécimen à petite échelle: KS2 et cisaillement. Le modèle simplifié peut être utilisé pour prédire la performance des composants de grande dimension avec un coût de calcul acceptable.En ce qui concerne le modèle solide, le comportement du joint soudé et du joint collé sont identifiés séparément calibrés sur un spécimen KS2 sous trajets de chargement différents. Les inhomogénéités dans la zone de fusion et la zone affectée par la chaleur du soudage par point sont prises en compte par l'intermédiaire de facteurs d'échelle applique à la contrainte d'écoulement du métal de base. Les facteurs d'échelle sont determinés par identification inverse. Le modèle de Gurson est utilisé pour prédire la rupture ductile en zone affectée par le chaleur et dans le métal base tandis que le modèle de zone cohésive est utilisé pour simuler la rupture quasi-fragile dans l'interface de la zone de fusion. Les paramètres du modèle de zone cohésive sont identifiés par l'intégrale J à la pointe de fissure de la soudure. Des éléments de zone cohésive avec une loi traction-séparation sont également utilisés pour prédire le décollement adhésif. Les paramètres du modèle sont identifiés par des essais du type « Double Cantilevered Beam » et « End Notched Flexure », correspondant aux mode I et mode II respectivement. Le modèle élaboré pour le soudage par est associé avec le modèle de collage pour prédire le comportement et la rupture du joint soudé-collé.En ce qui concerne le modèle simplifié, des éléments de connexion sont utilisés pour prédire les endommagement des soudure par point. Les paramètres de l'élément de connexion sont identifiés par des tests de KS2 sous différents trajets de chargement. Enfin, les modèles simplifiés d'un soudage, d'un collage, et d'un soudé-collé sont validés sur une jonction en T qui peut représenter le pilier-B de carrosserie de la voiture. / Spot welding and adhesive bonding are widely used in joining of sheet metals, such as assembling of car body-in-white. Recently, spot weld and adhesive are combined to make weld bonded joint, which is employed to join Advanced High Strength Steel to improve the stiffness and crashworthiness of car body. In industry, the assessment of designing prior to prototype requires reliable constitutive models in terms of the prediction of the mechanical behaviors. The FE model of weld bonded joint is a new challenge as it should combine the models of spot welding and the models of adhesive. This thesis focuses on the modeling of weld bonded joint by DP600 steel and structural adhesive SikaPower®-498. The model of weld bonded joint consists of solid model and simplified model. The former is devoted to predict the behavior of weld bonded joint on small-scale specimen: KS2 and lap-shear. The latter can be used to predict the performance of large components with acceptable computational cost. As regards solid model, spot welded joint and adhesive bonded joint behaviors are separately identified by KS2 specimen under different loading path. The inhomogeneities in fusion zone and heat affected zone of spot weld are taken into account via the scaling of the flow stress of base metal. The scaling factors are calibrated by inverse identification. Gurson model is used to predict ductile fracture in heat affected zone and base metal while cohesive zone model is employed to simulate quasi-brittle fracture in the interface of fusion zone. The parameters of cohesive zone model are identified by the J-integral at the notch tip of spot weld crack. Cohesive zone elements with traction-separation-laws are also used to predict adhesive debonding. Model parameters are calibrated by Double Cantilevered Beam and End Notched Flexure specimens, corresponding to Mode-I and Mode-II fracture respectively. The model developed for spot weld is associated with adhesive model to predict weld bonded joint. As regards simplified model, connector elements are employed to predict the damage of spot weld. The parameters of connector element are identified by KS2 tests under different loading paths. Finally, the simplified model of spot welding, adhesive bonding, and weld-bonding are validated by T-joint which can represent the B-pillar of car body.
3

Dimensioning of Punctiform Metal-Composite Joints: A Section-Force Related Failure Criterion: Dimensioning of Punctiform Metal-Composite Joints: A Section-ForceRelated Failure Criterion

Seidlitz, Holger, Ulke-Winter, Lars, Gerstenberger, Colin, Kroll, Lothar 20 April 2015 (has links)
Reliable line production processes and simulation tools play a central role for the structural integration of thermoplastic composites in advanced lightweight constructions. Provided that material- adapted joining technologies are available, they can be applied in heavy-duty multi-material designs (MMD). A load-adapted approach was implemented into the new fully automatic and faulttolerant thermo mechanical flow drill joining (FDJ) concept. With this method it is possible to manufacture reproducible high strength FRP/metal-joints within short cycle times and without use of extra joining elements for the first time. The analysis of FDJ joints requires a simplified model of the joint to enable efficient numerical simulations. The present work introduces a strategy in modeling a finite-element based analogous-approach for FDJ-joints with glass fiber reinforced polypropylene and high-strength steel. Combined with a newly developed section-force related failure criterion, it is possible to predict the fundamental failure behavior in multi-axial stress states. The functionality of the holistic approach is illustrated by a demonstrator that represents a part of a car body-in-white structure. The comparison of simulated and experimentally determined failure loads proves the applicability for several combined load cases.
4

Erweiterung der Verfahrensgrenzen des Flach-Clinchens / Enhancement of the process limitations of flat-clinching

Gerstmann, Thoralf 23 August 2016 (has links) (PDF)
Eines der am häufigsten in der Automobilindustrie eingesetzten mechanischen Fügeverfahren ist das Clinchen, auch Durchsetzfügen genannt. Hierbei werden zwei oder mehr sich überlappende Bleche lokal umgeformt, sodass eine form- und kraftschlüssige Verbindung mit matrizenseitiger Überhöhung entsteht. Eine Sonderform des Clinchens ist das Flach-Clinchen zur Herstellung einseitig ebener Clinch-Verbindungen. Mit dem Ziel, die Verfahrensgrenzen des konventionellen Flach-Clinchens zu erweitern, werden im Rahmen der vorliegenden Arbeit zwei neuartige Verfahrensvarianten des Flach-Clinchens entwickelt. Um die Verbindungsfestigkeit der Flach-Clinch-Verbindung zu erhöhen, wird ein zusätzliches Hilfsfügeelement in den Fügepunkt eingebracht. Dies bewirkt zum einen eine Vergrößerung des Hinterschnittes und daraus resultierend eine erhöhte Belastbarkeit gegenüber Kopfzugbeanspruchung. Zum anderen wird der Fügepunkt durch das zusätzliche Material stabilisiert und folglich die Belastbarkeit gegenüber Scherzugbeanspruchung verbessert. Die zweite Verfahrensvariante beinhaltet die Kombination aus Flach-Clinchen und Kleben zum sogenannten Flach-Clinchkleben. Hierbei dient die mechanische Verbindung hauptsächlich als Fixierhilfe bis zur vollständigen Aushärtung des Klebstoffs. Dies ermöglicht eine direkte Weiterverarbeitung des Bauteils nach dem Fügen und somit eine deutliche Verkürzung der Prozesszeiten. Die Entwicklung des Flach-Clinchens mit Hilfsfügeelement und des Flach-Clinchklebens erfolgt ausschließlich mittels numerischer Simulationen. Die hierbei gewonnenen Erkenntnisse werden anschließend experimentell verifiziert und die Verbindungsfestigkeiten der neuentwickelten Verfahrensvarianten bestimmt. / Clinching is one of the most common used mechanical joining processes in automotive industry. Here, two or more overlapping metal sheets are locally formed so that a form- and force-closed joint with diesided protrusion is established. A special type of clinching is the so-called flat-clinching for the production of one-sided planar joints. Within the framework of this thesis, two novel process variants of flat-clinching are developed for enhancing the process limitations of conventional flat-clinching. For increasing the joint strength, a complementary joining element is inserted into the joint. This causes an enlargement of the interlocking, leading to a higher resistance to cross tension loads. Also, the additional material stabilizes the joint and hence improves the resistance to shear load. The second process variant, adhesive flat-clinching, includes the combination of flat-clinching and adhesive bonding. The metal sheets are fixed by flat-clinching and the final joint strength is achieved after the complete curing of the adhesive. This enables a continuous processing of the component and therefore, the process time can be shortened. The development of flat-clinching using complementary joining elements and adhesive flat-clinching is exclusively carried out by using numerical simulation. The knowledge gained from the simulations is subsequently experimentally proven. Also, the joint strength of the novel process variants is experimentally determined.
5

Hybridfügen: Numerische Verfahrensentwicklung des Flach-Clinchklebens

Gerstmann, Thoralf 05 July 2019 (has links)
Im Vertrag wird die numerische Verfahrensentwicklung des Flach-Clinchklebens präsentiert. Schwerpunkte bilden hierbei die Bestimmung der Materialdaten und die anschließende Implementierung in das Simulationsmodell sowie die Modellierung des Prozesses. Es wird auf numerische Besonderheiten, wie die Kontaktabbildung zwischen den Blechen und der Klebstoffschicht sowie auf die Trennung der Klebstoffschicht und die damit verbundene Bildung von Klebstofftaschen, eingegangen. Weiterhin werden verschiedene Ansätze vorgestellt, um die Hinterschnittausbildung zwischen den Blechen zu ermöglichen und hierdurch die Handhabungsfestigkeit der Hybridverbindung zu gewährleisten. Abschließend erfolgen die experimentelle Validierung ausgewählter Verfahrensparameter sowie die Bestimmung der mechanischen Verbindungskennwerte.
6

Erweiterung der Verfahrensgrenzen des Flach-Clinchens: Enhancement of the process limitations of flat-clinching

Gerstmann, Thoralf 23 August 2016 (has links)
Eines der am häufigsten in der Automobilindustrie eingesetzten mechanischen Fügeverfahren ist das Clinchen, auch Durchsetzfügen genannt. Hierbei werden zwei oder mehr sich überlappende Bleche lokal umgeformt, sodass eine form- und kraftschlüssige Verbindung mit matrizenseitiger Überhöhung entsteht. Eine Sonderform des Clinchens ist das Flach-Clinchen zur Herstellung einseitig ebener Clinch-Verbindungen. Mit dem Ziel, die Verfahrensgrenzen des konventionellen Flach-Clinchens zu erweitern, werden im Rahmen der vorliegenden Arbeit zwei neuartige Verfahrensvarianten des Flach-Clinchens entwickelt. Um die Verbindungsfestigkeit der Flach-Clinch-Verbindung zu erhöhen, wird ein zusätzliches Hilfsfügeelement in den Fügepunkt eingebracht. Dies bewirkt zum einen eine Vergrößerung des Hinterschnittes und daraus resultierend eine erhöhte Belastbarkeit gegenüber Kopfzugbeanspruchung. Zum anderen wird der Fügepunkt durch das zusätzliche Material stabilisiert und folglich die Belastbarkeit gegenüber Scherzugbeanspruchung verbessert. Die zweite Verfahrensvariante beinhaltet die Kombination aus Flach-Clinchen und Kleben zum sogenannten Flach-Clinchkleben. Hierbei dient die mechanische Verbindung hauptsächlich als Fixierhilfe bis zur vollständigen Aushärtung des Klebstoffs. Dies ermöglicht eine direkte Weiterverarbeitung des Bauteils nach dem Fügen und somit eine deutliche Verkürzung der Prozesszeiten. Die Entwicklung des Flach-Clinchens mit Hilfsfügeelement und des Flach-Clinchklebens erfolgt ausschließlich mittels numerischer Simulationen. Die hierbei gewonnenen Erkenntnisse werden anschließend experimentell verifiziert und die Verbindungsfestigkeiten der neuentwickelten Verfahrensvarianten bestimmt. / Clinching is one of the most common used mechanical joining processes in automotive industry. Here, two or more overlapping metal sheets are locally formed so that a form- and force-closed joint with diesided protrusion is established. A special type of clinching is the so-called flat-clinching for the production of one-sided planar joints. Within the framework of this thesis, two novel process variants of flat-clinching are developed for enhancing the process limitations of conventional flat-clinching. For increasing the joint strength, a complementary joining element is inserted into the joint. This causes an enlargement of the interlocking, leading to a higher resistance to cross tension loads. Also, the additional material stabilizes the joint and hence improves the resistance to shear load. The second process variant, adhesive flat-clinching, includes the combination of flat-clinching and adhesive bonding. The metal sheets are fixed by flat-clinching and the final joint strength is achieved after the complete curing of the adhesive. This enables a continuous processing of the component and therefore, the process time can be shortened. The development of flat-clinching using complementary joining elements and adhesive flat-clinching is exclusively carried out by using numerical simulation. The knowledge gained from the simulations is subsequently experimentally proven. Also, the joint strength of the novel process variants is experimentally determined.

Page generated in 0.0552 seconds