• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Study of Joint Strength and Microstructure for Lead-free and Fluxless AuSn Solders

Tsai, Wan-Chi 23 June 2003 (has links)
The joint strength and fracture surface of Sn80¢HAu20¢H and Sn20¢HAu80¢H solders in laser diode package under thermal aging testing were studied experimentally. The AuSn thin film solders were coated on the substrate by electro-plating technique. The Sn80¢HAu20¢H solder was melting point at 210¢J,while the Sn20¢HAu80¢Hsolder was melting point at 280¢J. During the processes of bonding substrate and Al2O3 together, the N2 and H2 gases were used to achieve the bonding. Then the specimens were aged at 150¢J for one, four, nine, sixteen, twenty-five, thirty-six and forty-nine days. We investigated the bonding strength, voids, IMC thickness and microstructure of the Sn80¢HAu20¢H and Sn20¢HAu80¢H solders. In addition, we also studied the comparison with the process of flux and fluxless. Under the forty-nine days of aging, the bonding strength of Sn80¢HAu20¢Hand Sn20¢HAu80¢H solders decreased from 34.3¢V to 26.0¢V and from 54.96¢V to 47.06¢V,respectively. Moreover,the IMC thickness of Sn80¢HAu20¢H and Sn20¢HAu80¢H solders increased from1.07£gm to 2.85£gm and from 0.83 £gm to 1.08 £gm, respectively. The Sn20¢HAu80¢H solders showed a better joint strength performance than Sn80¢HAu20¢H due to the less grown of IMC and superior mechanical properties of Au. The fluxless process exhibited the better joint strength performance due to the less grown of voids. In the study, by using the lead-free and fluxless process, the reliability of laser module package may be improved.
2

Optimising the performance of interference-fitted work rolls

McMillan, Martin Daniel January 2013 (has links)
No description available.
3

Interfibre Joint Strength under Mixed Modes of Loading

Magnusson, Mikael S. January 2014 (has links)
The load carrying capacity of interbre joints are one of the key entities for build-up of strength inpaper materials. In order to gain insight in how to tailor the macroscopic properties of such materialsby chemical and/or mechanical treatments at a microscopic level, direct measurement of individualbre{bre crosses are typically performed. However, the state of loading in the interbre joint, intesting of individual bre{bre crosses, is in general very complex and an increased understandingfor how to evaluate the mechanical properties of interbre joints is desirable. In Paper A, amethod for manufacturing and measuring the strength of isolated interbre joints is presented. Themethod is applied to investigate the strength of bre{bre crosses at two dierent modes of loading.Also, an investigation on the manufacturing conditions is presented. The strength distribution ofindividually prepared bre{bre crosses is characterized and it was found that the median strengthin a peeling type of loading was about 20% compared to samples tested in the conventional shearingtype of loading. In Paper B, a procedure for evaluating interbre joint strength measurementsin terms of resultant forces and moments in the interbre joint region is presented. The methodis applied to investigate the state of loading in bre{bre crosses tested in peeling and shearing,respectively. It is shown that for a typical interbre joint strength test, the load components otherthan shear, cannot in general be neglected and is strongly dependent on the structural geometry ofthe bre{bre crosses. In Paper C, four distinctly dierent load cases; peeling, shearing, tearingand a biaxial type of loading was tested mechanically and evaluated numerically in order to gainmore information on how interbre joints behave in dierent modes of loading. In Paper D, thein uence of a chemical additive on the interbre joint strength is investigated on the microscopic(joint) scale and correlated to the eect previously observed on the macroscopic (sheet) scale. Xraymicrotomography and image analysis was used to understand structural changes in the brousnetwork in terms of the number of interbre joints as well as the average interbre joint contact area.The results showed that the median interbre joint strength increased by 18% upon adsorption, andthat the polyelectrolyte increased the number of contacts between the bres as well as an increasedarea of contact. In Paper E, the damage behaviour of individual interbre joints is analyzed. Froman extensive number of mechanical tests, the typical damage behaviour is identied and a failurecriterion is used to study the in uence of failure properties to give indications on how to tailor thematerial to optimize the joint strength. / En av de viktigaste mekanismerna for den lastbarande formagan hos pappersmaterial ar brottegenskapernahos berfogarna. For att eektivt skraddarsy sadana materials egenskaper genom kemiskoch/eller mekanisk behandling samt for att forsta hur sadana modieringar paverkar egenskapernapa en mikroskopisk niva ar provning av individuella ber-ber-kors en allmant anvand metod. Belastningeni en berfog vid sadan provning ar dock generellt komplicerad och ytterligare kunskapom hur berfogars mekaniska egenskaper skall utvarderas ar onskvard. I Artikel A, presenterasen metod for tillverkning samt mekanisk provning av isolerade ber-kors vid tva olika typer avbelastning. Vidare undersoks hur torktrycket, torkmetoden samt graden av malning inverkar pafogstyrkan. Resultaten visar att brottlasten for en globalt akande belastning var omkring 20 % avbrottlasten for prov utforda med den konventionella skjuvande belastningen samt att styrkan hosindividuellt tillverkade berkors ar fordelade enligt en Weibull fordelning. I Artikel B, presenterasen numerisk metod for utvardering av fogstyrke-matningar med avseende pa kraft- och momentresultanternai gransytan mellan brerna. Metoden anvands for att studera belastningsmoden hosber-kors i tva principiellt olika lastfall. Resultaten visar att for ett typiskt berfogsprov, kan intelastkomponenterna, vid sidan av skjuvning, generellt forsummas da de ar starkt beroende avber-korsets geometri. I Artikel C, jamfors fogstyrkematningar under fyra principiellt olika lastfall; akande, skjuvande, rivande samt biaxiellt. De experimentella last-forskjutningskurvorna, samtde beraknade lastmoderna anvands for att undersoka vilket tillskott pa information de foreslagnalastfallen kan ge i hansyn till fogstyrkan hos massabrer. I Artikel D, undersoks en polymers (somabsorberats pa berytorna) inverkan pa saval berniva som pa natverksniva. Fiberfogstyrkan matsexperimentellt och eekten av den kemiska tillsatsen jamfors pa mikroskopisk niva (ber-kors) medtidigare uppmatt eekt pa makroskopisk niva (ark). Rontgentomogra och bildanalys anvands foratt undersoka de strukturella skillnaderna som uppstar i de brosa natverken vid absorption av enpolyamin och resultaten visar att antalet berfogar per berlangdenhet samt att medelkontaktareanokade. Resultaten visar ocksa att medianen av berfogsstyrkan okade med 18 %. Dessa eekter sammantagetar anledningen till varfor polyaminer, sasom PAH, ar sa eektiva for att oka torrstyrkanhos pappersmaterial. I Artikel E, karakteriseras skadebeteendet hos individuella berfogar franett omfattande antal matningar. Ett brottkriterium infors i den numeriska utvarderingsmetoden foratt studera skadebeteendet. Kanslighetsanalys och inverkan av brottparametrarna studeras ocksafor att ge indikationer pa hur egenskaperna kan skraddarsys for att optimera berfogstyrkan. / <p>QC 20140527</p> / BiMaC Innovation
4

Modeling three-dimensional hip and trunk peak torque as a function of joint angle and velocity

Stockdale, Allison Anne 01 July 2011 (has links)
Healthcare costs for treating back pain have risen to 50 billion dollars a year in the past decade. In attempt reduce the risk of back pain; ergonomists use digital human modeling to assess the risks involved in functional tasks. However, current models are limited to analyzing the strength in static position. The overall goal of this study is to provide three-dimensional strength surfaces incorporating both static and dynamic strength for digital human models. Fifteen male and twenty-one female subjects were recruited. The study required two visits, were hip strength testing was performed in one visit and trunk strength testing was performed in the other visit. Hip strength was tested by completing flexion and extension isometric tests and isokinetic tests. Trunk flexion and extension strength was also measured by isometric and isokinetic tests. Isometric and Isokinetic tests were completed for trunk left and right rotation too. The data was analyzed using custom made MATLAB (Mathworks, Inc) programs and the three-dimensional strength surfaces were generated using SigmaPlot (SYSTAT Software, INC). The maximum peak torques were as followed: Hip flexion male 183Nm(57), hip flexion female 106 Nm (38), hip extension male 181 Nm (71), hip extension female 130 Nm (52), trunk flexion male 182 Nm (40.3), trunk flexion female 111.8 Nm (32), trunk extension male 328.5 Nm (52), trunk extension female 197.5 Nm (58), trunk right rotation male 71.6 Nm (20), trunk right rotation female 43 Nm (14), trunk left rotation male 71 Nm (24), and trunk left rotation female (43 Nm (17). Correlations were found between the hip and trunk joints, and the flexion and extension motion. Implementing this data into digital human models will provide realistic static and dynamic human strength parameters. Ultimately, this will help ergonomists predict and reduce high risk back injuries.
5

Composite RCS frame systems: construction and peformance

Steele, John Phillip 30 September 2004 (has links)
The objective of this research program is to further evaluate the performance and constructability of reinforced concrete (RC) column-steel beam-slab systems (RCS) for use in low- to mid-rise space frame buildings located in regions of high wind loads and/or moderate seismicity. To better understand these systems, two full scale RCS cruciform specimens were tested under bidirectional quasi-static reversed cyclic loading. The experimental portion of this research program included the construction and testing of two full-scale cruciform specimens with identical overall dimensions but with different joint detailing. The two joint details evaluated were joint cover plates and face bearing plates with localized transverse ties. The construction process was recorded in detail and related to actual field construction practices. The specimens were tested experimentally in quasi-static reversed cyclic loading in both orthogonal loading directions while a constant axial force was applied to the column, to simulate the wind loads in a subassembly of a prototype building. To compliment the experimental work, nonlinear analyses were performed to evaluate the specimen strength and hysteretic degradation parameters for RCS systems. In addition, current recommendations in the literature on the design of RCS joints were used to estimate specimen joint strength and were compared with the experimental findings.
6

Composite RCS frame systems: construction and peformance

Steele, John Phillip 30 September 2004 (has links)
The objective of this research program is to further evaluate the performance and constructability of reinforced concrete (RC) column-steel beam-slab systems (RCS) for use in low- to mid-rise space frame buildings located in regions of high wind loads and/or moderate seismicity. To better understand these systems, two full scale RCS cruciform specimens were tested under bidirectional quasi-static reversed cyclic loading. The experimental portion of this research program included the construction and testing of two full-scale cruciform specimens with identical overall dimensions but with different joint detailing. The two joint details evaluated were joint cover plates and face bearing plates with localized transverse ties. The construction process was recorded in detail and related to actual field construction practices. The specimens were tested experimentally in quasi-static reversed cyclic loading in both orthogonal loading directions while a constant axial force was applied to the column, to simulate the wind loads in a subassembly of a prototype building. To compliment the experimental work, nonlinear analyses were performed to evaluate the specimen strength and hysteretic degradation parameters for RCS systems. In addition, current recommendations in the literature on the design of RCS joints were used to estimate specimen joint strength and were compared with the experimental findings.
7

Friction Bit Joining of Dissimilar Combinations of DP 980 Steel and AA 7075

Peterson, Rebecca Hilary 01 June 2015 (has links)
Friction Bit Joining (FBJ) is a new technology that allows lightweight metals to be joined to advanced high-strength steels (AHSS). Joining of dissimilar metals is especially beneficial to the automotive industry because of the desire to use materials such as aluminum and AHSS in order to reduce weight and increase fuel efficiency. In this study, FBJ was used to join 7075 aluminum and DP980 ultra-high-strength steel. FBJ is a two-stage process using a consumable bit. In the first stage, the bit cuts through the top material (aluminum), and in the second stage the bit is friction welded to the base material (steel). The purpose of the research was to examine the impact a solid head bit design would have on joint strength, manufacturability, and ease of automation. The solid head design was driven externally. This design was compared to a previous internally driven head design. Joint strength was assessed according to an automotive standard established by Honda. Joints were mechanically tested in lap-shear tension, cross-tension, and peel configurations. Joints were also fatigue tested, cycling between loads of 100 N and 750 N. The failure modes that joints could experience during testing include: head, nugget, material, or interfacial failure. All tested specimens in this research experienced interfacial failure. Welds were also created and examined under a microscope in order to validate a simulation model of the FBJ process. The simulation model predicted a similar weld shape and bond length with 5 percent accuracy. Joints made with external bits demonstrated comparable joint strength to internal bits in lap-shear tension and cross-tension testing. Only external bits were tested after lap-shear tension, because it was determined that external bits would perform comparably to internal bits. Joints made with external bits also exceeded the standard for failure during fatigue testing. Peel tested specimens did not meet the required strength for the automotive standard. Examining specimens under a microscope revealed micro-cracks in the weld. These defects have been shown to decrease joint strength. Joint strength, especially during peel testing, could be increased by reducing the presence of micro-cracks. The external bit design is an improvement from the internal bits for manufacturability and ability to be automated, because of the less-expensive processes used to form the bit heads and the design that lends to ease of alignment.
8

Friction Bit Joining of Dissimilar Combinations of GADP 1180 Steel and AA 7085 – T76 Aluminum

Atwood, Lorne Steele 01 June 2016 (has links)
Friction Bit Joining (FBJ) is a method used to join lightweight metals to advanced high-strength steels (AHSS). The automotive industry is experiencing pressure to improve fuel efficiency in their vehicles. The use of AHSS and aluminum will reduce vehicle weight which will assist in reducing fuel consumption. Previous research achieved joint strengths well above that which was required in three out of the four standard joint strength tests using DP980 AHSS and 7075 aluminum. The joints were mechanically tested and passed the lap-shear tension, cross-tension, and fatigue cycling tests. The t-peel test configuration never passed the minimum requirements. The purpose of continuing research was to increase the joint strength using FBJ to join the aluminum and AHSS the automotive industry desires to use specifically in the t-peel test. In this study FBJ was used to join 7085 aluminum and GADP1180 AHSS. The galvanic coating on the AHSS and its increased strength with the different aluminum alloy required that all the tests be re-evaluated and proven to pass the standard tests. FBJ is a two-step process that uses a consumable bit. In the first step the welding machine spins the bit to cut through the aluminum, and the second step applies pressure to the bit as it comes in contact with the AHSS to create a friction weld.
9

Posouzení pevnosti a životnosti hydraulického klapkového uzávěru / Strength and lifetime analysis of the hydraulic key lock

Klíč, Jan January 2015 (has links)
Theoretical part of this master thesis is focused on the theory of fatigue life. The second part deals with the assesment of static strength the closing flap in front of water turbine. Futher fatigue analysis of the closing flap is performed considering corrosive environment. The aim is to verify the required service lifetime of 50 years.
10

Key Way Joint Strength of Precast Box-Beam Bridges

Habouh, Mohamed I. January 2015 (has links)
No description available.

Page generated in 0.1366 seconds