Spelling suggestions: "subject:"cybrid silicon photonic"" "subject:"bybrid silicon photonic""
1 |
Hybrid Integration of Er-doped Materials and CNTs on Silicon for Light Emission and Amplification / Intégration hybride sur silicium de matériaux dopés Erbium ou riches en nanotubes de carbone semiconducteurs pour l'émission et l'amplification de la lumière sur puceZhang, Weiwei 13 January 2017 (has links)
Ce travail de thèse est une contribution à la thématique de l’intégration de matériaux actifs en photonique silicium pour la réalisation de fonctions actives. L’accent a été mis sur des matériaux préparés en couches minces pouvant être dépose sur substrats silicium pour la réalisation de sources de lumière intégrées. L’approche classique en photonique silicium dans le fenêtre télécom (1.55μm) repose sur l’utilisation de guides strip fabriqués à partir de substrats silicium sur isolant, SOI). Le choix qui été fait dans ce travail repose en revanche sur l’utilisation de guides à cœur creux (‘slot waveguides’) en raison de l’excellent recouvrement qu’ils permettent entre leur mode optique fondamental quasi-TE et les matériaux de couverture utilisés. Les contributions de cette thèse ont porté à la fois sur les étapes de conception/simulation et sur celles liées à l’optimisation des étapes de fabrication en salle blanche. Des guides slot Si/SiO2 et SiN/SiO2 et des résonateurs en anneaux basés sur ces guides ont conduit à : - des pertes de propagation typiquement comprises entre 1dB/cm et 7dB/cm. - des résonateurs à facteur de qualité de quelques dizaines de milliers pour des structures couvertes par des liquides d’indice. Dans un deuxième temps, les travaux poursuivis ont visé à l’intégration de matériaux actifs dopés à l’Erbium dans les guides à fentes présentés en première partie en vue de la démonstration de gain optique sur puce dans la fenêtre télécom (1.55μm). Une première collaboration nous a amené à la démonstration de gain optique sur puce à partir d’une géométrie de guide en arête inversée fabriqué en polymère actif. Un gain interne de l’ordre de 25dB sur puce a été obtenu par cette approche pour une puissance de pompe optique de l’ordre de 70 à 80mW. Une seconde collaboration s’est focalisée, quant à elle, sur l’intégration d’oxyde Al2O3 dans des guides à fentes SiN fabriqués à Orsay. Les problématiques d’intégration des matériaux ont été étudiées dans un premier temps. Le résultat le plus marquant a été obtenu pour un guide de longueur 400μm, pour lequel un gain relatif de 1.5dB a été obtenu pour une puissance de pompe de l’ordre de 50mW à longueur d'onde 1480nm. De manière complémentaire, nous avons exploré une seconde voie destinée à la démonstration de structures émettrices/amplificatrices sur puce, exploitant l’utilisation de nanotubes de carbone semi-conducteurs. Notre équipe du C2N, en forte collaboration avec le CEA-Saclay, a développé une méthode de préparation de solutions riches en nanotubes de carbone semi-conducteurs (séparation par centrifugation). Au final, les couches minces qui en ont résulté ont constitué un milieu actif qui a pu être intégré de manière planaire sur des échantillons de silicium pour le développement de fonctions optiques intégrées par intégration hybride. Par cette approche, nous avons démontré : - qu’un pompage vertical des structures photoniques pouvait donner lieu à une extraction de photoluminescence (PL) en sortie guidée par la tranche, dans des guides à fentes, - qu’un renforcement significatif de la PL était obtenu par effet de recyclage des photons dans des résonateurs diélectriques à base de guides à fente. Pour conclure, l’ensemble des travaux présentés dans cette thèse apporte une contribution au développement d’une photonique hybride sur silicium exploitant les propriétés de la plateforme de guidage optique sur SOI et celles de matériaux actifs (polymères dopés à l’Erbium ou aux nanotubes de carbone). / This thesis is a contribution to the hybrid integration of active materials including Erbium-doped and carbon nanotubes rich layers on silicon for on-chip light emission.In a first step, we designed, fabricated, and characterized within the silicon-on-insulator and silicon nitride platforms a range of photonic structures including strip/slot waveguides, micro disks, strip/slot ring resonators, and micro cavities aiming at preparing a set of passive device building blocks needed for hybrid integration on Si. Silicon slot waveguides and slot ring add-drop resonators filled with index liquids with linear propagation losses 2-7 dB/cm and Q-factors up to 30,000, have been demonstrated around wavelength=1.55µm. Propagation loss of silicon nitride slot waveguides were minimized down to ~4dB/cm for compact spiral structures (2cm long, within ~500µm×500µm area). Air-band mode Nano beam cavities were also investigated, leading to Nano cavities with mode volumes V ~0.03(wavelength/n)^3 and Q-factors ~70,000 when filled with soft materials.In a second step, hybrid integration of Erbium doped materials and semiconducting single-wall carbon nanotubes (SWCNTs) was investigated for light emission under optical pumping.Integration of Erbium-doped materials was studied within the framework of two collaborations: Prof. Daming Zhang’s team, in State Key Laboratory on Integrated Optoelectronics, Jilin University, China, and Prof. Zhipei Sun, in Department of Micro- and Nanosciences, Aalto University, Finland. Erbium doped layers coming from Jilin were composed of Er3+ and Yb3+ co-doped core {shell} nanoparticles which were copolymerized with methyl methacrylate (MMA) to synthesize nanocomposite (PMMA-NPs: Er3+/Yb3+). We conducted the experimental characterization that led to the demonstration of an internal net gain up to 10-17dB/cm at wavelength=1.53µm in Erbium doped polymer rib waveguides fabricated in Jilin. The second Erbium doped material available during this thesis was based on Er2O3/Al2O3 atomic layers, grown in Aalto University. This collaboration was devoted to integrate high Erbium ion concentration (10E21/cm3) in oxide cladding layers on top of silicon nitride slot waveguides, which were fabricated in our group for the demonstration of on-chip optical net gain. The carried out experiments have conducted to the demonstration of 1.5-22.8dB/cm gain for sub millimeter length waveguides.In another direction, hybrid integration of SWCNTs emitting at wavelengths around 1.3 µm on ring resonators and Nano beam cavities has been investigated. First, we studied the coupling of SWCNTs photoluminescence (PL) in silicon micro-ring resonators and compared it with the PL intensity coupled into the bus waveguide . It has been shown that the pump beam polarization controls the light coupling into the straight bus waveguide. We demonstrated an enhancement of the PL intensity of 20dB at resonance. We also explored CNT hybrid integration with ultra-small mode volume Nano beam optical cavities, and hence with larger Purcell-like Q/V factors in comparison with the one obtained in micro-ring resonators. The results revealed that the PL resonance enhancement due to Nano beam cavity field confinement exhibited a nonlinear growth as a function of the pump power. It was also shown that the resonance of the PL peak intensity grows faster with the pump power than the PL background, which is accompanied by a line width narrowing of the resonance PL peak. This result is the first step to achieve an integrated laser based on carbon nanotubes.
|
Page generated in 0.0655 seconds