• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Simulation Platform Addressing the Digitalization of the Stockholm Healthcare System / Utveckling av en simuleringsplattform som behandlar digitaliseringen av Stockholms sjukvårdssystem

Skoglund, Pascal, Peterson, Tobias January 2018 (has links)
As e-Health solutions start being integrated into the healthcare system in Stockholm County, the possibility of moving monitored patients out of the hospitals and into their homes increases. Such a change in the healthcare system could require a major redistribution of resources in order to meet possible changes in resource demands. Simulations can be used in order to understand how the healthcare system needs to adapt to handle the relocation of monitored patients. In this thesis project, a simulation platform has been designed and developed to address possible questions posed by this redesign of the healthcare system. By conducting a literary study, it was found that a discrete event- and agent based- hybrid simulation architecture could address the complexity required for such a large simulation environment by simulating across different abstraction levels. The agent based simulation component of the architecture models resources such as nurses, doctors, and patients as agents. A patient agent has a statechart which allows the patient to move between situational states and require interventions depending on a developed illness progression logic and routines. Interventions are modeled as event workflows in the discrete event simulation architecture. These cover most of the relevant interventions in a home monitored patient's life, such as nurse home visits and doctor video consultations. A communication protocol has been defined which will allow this model to communicate with a healthcare facility model. The platform implements a user interface for changing relevant input parameters, such as the amount of patients or doctors, in order to simulate different scenarios. Therefore the provided framework reduces the need for any major reprogramming between model runs. Outputs provided by simulation runs give relevant insights on patient resource usage and logistics management. A method for automatic generation of locations for patient homes and healthcare facilities on Geographic Information Systems open street maps has also been identified but not implemented. A validation process was conducted by allowing experts in the field to test the platform and give feedback on its validity and outputs. The simulation architecture provided by this thesis achieves the objective of modeling flows and resources in a further digitalized healthcare system in Stockholm County.
2

Assessment of Exposure to Electromagnetic Fields from Distributed MIMO Antennas / Bedömning av elektromagnetisk exponering från distribuerade MIMO antenner

Nyberg Zou, Frans January 2022 (has links)
Research on 6G telecommunication networks has been initiated. Among all potential technology components, the distributed multi-input multioutput (D-MIMO) technology is one of the promising enablers. Due to the new technology solutions, additional methodologies for assessment of electromagnetic field (EMF) exposure need to be developed. This study provides methodologies and results for EMF exposure from D-MIMO operating at 3.5 GHz in an indoor industrial environment using CST Studio Suite®. The D-MIMO access points (APs) are mounted on the 7 m ceiling. The EMF exposure is statistically evaluated in a subvolume that extends up to 2.5 m above the floor, using receiving antennas that are pseudorandomly distributed over space. The resulting EMF exposure levels of DMIMO were compared to those of a ceiling-mounted reference massive MIMO array, considering different receiving antenna orientations and AP densities. The results from zero forcing (ZF) precoding were compared to those based on maximum ratio transmission (MRT) precoding. For a total radiated power of 1 W, the 99th-percentile power density values in the D-MIMO deployment are found to be 2.9 mW/m2 or lower, in all studied cases using the MRT-based precoding. This is about 0.03 % of the EMF exposure limits for the general public specified in international guidelines. The corresponding results from the reference massive MIMO array are found to be 7.7 mW/m2 or lower. In the ZF precoding case, the total radiated power and the EMF exposure levels are reduced and the reduction in the D-MIMO deployment is found greater than the reduction in the massive MIMO array. At the 99th-percentile, the power density value is found to be 0.090 mW/m2 in one of the cases of D-MIMO deployment and 5.1 mW/m2 in the corresponding case with the massive MIMO array. The effects of receiving antenna orientations and AP density on the EMF exposure levels are found to be small. This work benefits further studies by providing estimates of realistic EMF exposure and by demonstrating a simulation method for EMF exposure assessment for D-MIMO. / Forskning inom 6G har påbörjats. Bland de möjliga teknologierna för 6G är distribuerad multi-input multi-output (D-MIMO) ett lovande koncept som möjliggör 6G. På grund av den nya teknologin förväntas nya metoder behövas för bedömning av exponering för elektromagnetiska fält. I denna studie utvecklades och användes metoder för simulering av elektromagnetisk exponering från D-MIMO på frekvensen 3.5 GHz i en industriell inomhusmiljö i CST Studio Suite®. En statistisk behandling av exponeringsnivåer utfördes för pseudoslumpmässiga fördelningar av mottagarantenner. Antennerna i nätverket var placerade intill taket på 7 meters höjd och exponeringsnivån mättes i en delvolym som sträcker sig från golvet till 2.5 m höjd. Jämförelser gjordes med massiv MIMO som referens, och mellan olika vinklar hos mottagarantenner och tätheter av uppkopplingspunkter i nätverket. Antennloberna riktades med zero forcing (ZF) och en metod baserad på maximum ratio transmission (MRT). Med MRT och en total utsänd effekt på 1 W, var 99th-percentilen för elektromagnetisk fältintensitet från D-MIMO 2.9 mW/m2 eller lägre i alla studerade fall, vilket är 0.03 % av den internationella referensnivån för elektromagnetisk exponering. Motsvarande nivå för massiv MIMO var 7.7 mW/m2 eller lägre. Med ZF reducerades den totala utsända effekten och reduktionen i exponeringsnivån var större för D-MIMO än för massiv MIMO. I ett av de studerade fallen var 99th-percentilen från D-MIMO 0.090 mW/m2 , och motsvarande nivå för massivt MIMO var 5.1 mW/m2 eller lägre, Effekterna av vinklar hos mottagarantenner och tätheter av uppkopplingspunkter var liten. Detta arbete bidrar till framtida studier inom ämnet genom att ange uppskattningar av realistiska exponeringsnivåer och genom att demonstrera en metod för simulering av exponeringsnivåer för D-MIMO.
3

The integration of earthquake engineering resources

Lamata Martinez, Ignacio January 2014 (has links)
Earthquake engineering is increasingly focusing on large international collaborations to address complex problems. Recent computing advances have greatly contributed to the way scientific collaborations are conducted, where web-based solutions are an emerging trend to manage and present results to the scientific community and the general public. However, collaborations in earthquake engineering lack a common interoperability framework, resulting in tedious and complex processes to integrate results, which cannot be efficiently used by third-party institutions. The work described in this thesis applies novel computing techniques to enable the interoperability of earthquake engineering resources, by integrating data, distributed simulation services and laboratory facilities. This integration focuses on distributed approaches rather than centralised solutions, and has been materialised in a platform called Celestina, that supports the integration of hazard mitigation resources. The prototype of Celestina has been implemented and validated within the context of two of the current largest earthquake engineering networks, the SERIES network in Europe and the NEES network in the USA. It has been divided into three sub-systems to address different problems: (i) Celestina Data, to develop best methods to define, store, integrate and share earthquake engineering experimental data. Celestina Data uses a novel approach based on Semantic Web technologies, and it has accomplished the first data integration between earthquake engineering institutions from the United States and Europe by means of a formalised infrastructure. (ii) Celestina Tools, to research applications that can be implemented on top of the data integration, in order to provide a practical benefit for the end user. (iii) Celestina Simulations, to create the most efficient methods to integrate distributed testing software and to support the planning, definition and execution of the experimental workflow from a high-level perspective. Celestina Simulations has been implemented and validated by conducting distributed simulations between the Universities of Oxford and Kassel. Such validation has demonstrated the feasibility to conduct both flexible, general-purpose and high performance simulations under the framework. Celestina has enabled global analysis of data requirements for the whole community, the definition of global policies for data authorship, curation and preservation, more efficient use of efforts and funding, more accurate decision support systems and more efficient sharing and evaluation of data results in scientific articles.

Page generated in 0.2631 seconds