• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 2
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 8
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

High pressure for fluid power systems

Heinrich, Allan Erwin, January 1970 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1970. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
22

Comparison of three drilling technologies to characterize the vadose zone, Hanford Site

Holm, Rochelle Hales, January 2007 (has links) (PDF)
Thesis (M.S. in environmental science)--Washington State University, August 2007. / Includes bibliographical references (p. 19).
23

Dynamic modeling of an excavator during digging and simulating the motion

Ozunlu, Ozcan Mutlu 01 January 2008 (has links) (PDF)
The aim of this study is to perform the dynamic force analysis of a 3-degrees-of-freedom excavator during digging the soil and to simulate the motion on computer screen. Standard load calculations are done statically, therefore the effects of forces changing with time on the system cannot be observed. The dynamic analysis method used in the thesis is Recursive Newton &ndash / Euler Method and the numerical analysis method for simulation is 4th Order Runge &ndash / Kutta Method. After this study, the effects of sudden velocity changes / i.e, accelerational movements on construction machines, positions of bodies and dynamic forces on joints will be appointed and it will be possible to plan and control the motion.
24

Evaluation of centrifugal pump performance derating procedures for non-Newtonian slurries

Kabamba, Batthe Matanda January 2006 (has links)
Thesis (MTech(Civil Engineering))--Cape Peninsula University of Technology, 2006. / The performance of a centrifugal pump is altered for slurry or viscous materials (Stepanoff, 1969) and this needs to be accounted for. Usually, the suitable selection and evaluation of centrifugal pumps is based only on water pump performance curves supplied by the pump manufacturer (Wilson, Addie, Sellgren & Clift, 1997). In 1984 Walker and Goulas conducted a number of pump performance tests with kaolin clay slurries and coal slurries on a Warman 4/3 AH horizontal slurry pump and a Hazleton 3-inch B CTL horizontal pump (Walker and Goulas, 1984). Walker and Goulas have analysed the test data and correlated the performance derating both at the best efficiency flow rate (BEP) and at 10% of the best efficiency flow rate (0.1 BEP) to the modified pump Reynolds number (NRep). They have noticed that the head and the efficiency reduction ratio decreased for the pump Reynolds number less then 10⁶. Furthermore, Walker and Goulas obtained a reasonably good agreement (± 5%) between pump test data for non-Newtonian materials and pump performance prediction using the Hydraulics Institute chart. Sery and Slatter (2002) have investigated pump deration for non-Newtonian yield pseudoplastic materials. The NRep was calculated using the Bingham plastic viscosity (µp). Results have shown good agreement with regard to head and efficiency reduction ratios in comparison with previous work. However, Sery and Slatter's pump performance correlation using the HI chart did not reach the same conclusion. Error margin of ± 20% and ± 10% were found for head and efficiency respectively. This study is an attempt to reconcile the differences between Walker and Goulas (1984) and Sery and Slatter (2002) and extend the evaluation of these derating methods to pseudoplastic materials. The test work was conducted in the Flow Process Research Centre laboratory of the Cape Peninsula University of Technology using two centrifugal pumps; a Warman 6/4 and a GrW 4/3. The materials used were water, CMC solution bentonite and kaolin suspension at different concentrations (7% and 9% by weight for bentonite; 5%, 6% and 7% by weight for CMC; 17%, 19% and 21% by volume for kaolin).
25

Dynamic simulation and control of teleoperated heavy-duty hydraulic manipulators

Sepehri, Nariman January 1990 (has links)
Some relevant aspects of dynamics and control of heavy-duty hydraulic machines in a teleoperated mode were investigated. These machines, such as excavators and forest harvesters, are mostly used in primary industries. They have a manipulator-like structure with a nonlinear and coupled actuating system. The aim of the project is to investigate different approaches towards converting such machines, with minimum changes, into task-oriented human-supervisory control systems. This provides the opportunity to use both human supervision and robotic power in hazardous environments and for tasks for which human decision is necessary. A methodology was developed for fast and accurate simulations. Analytical, steady-state and numerical techniques were combined using Large-Scale Systems analysis. The inclusion of nonlinearities in the form of discontinuities (e.g., gear backlash and stick-slip friction) in the model was investigated. Numerical simplifications of the structural dynamics and alternative solutions for the hydraulic part were also studied. The model describing the performance of the machine has been written in ACSL (Advanced Continuous Simulation Language) on a VAX computer system. A modified version of the program is at present running close to real-time on a single processor in conjunction with high speed graphics in a manner similar to a flight simulator used for human interface studies and training. The model also evaluates the performance of the machine in a teleoperated mode and under different control strategies. As a result a velocity control algorithm has been developed which is applied in conjunction with the closed-loop components for teleoperation of heavy-duty hydraulic machines; it is basically a feedforward compensation which uses the measured hydraulic line pressures along with fluid-flow equations as criteria to control the joint velocities as well as to uncouple the interconnected actuating system. The control algorithm has been written in C language and is running on an IRONICS computer system, interfaced between the human operator and the machine. The simulation results are supported by the experimental evidence. The experiments were performed on a Caterpillar 215B excavator. Improved operator safety, extension of human capability, job quality and productivity increase are the advantages of a successful implementation of robotic technology to these industrial machines. / Applied Science, Faculty of / Mechanical Engineering, Department of / Graduate
26

Optimization Of Backhoe-loader Mechanisms

Ipek, Levent 01 October 2006 (has links) (PDF)
This study aims to develop a computer program to optimize the performance of loader mechanisms in backhoe-loaders. The complexity and the constraints imposed on the loader mechanism does not permit the use of classical optimization techniques used in the synthesis of mechanisms. Genetic algorithm is used to determine the values of the design parameters of the mechanism while satisfying the constraints and trying to maximize breakout forces that the machine can generate.
27

Design Of A Demolition Boom

Cetin, Betul 01 September 2004 (has links) (PDF)
ABSTRACT DESIGN OF A DEMOLITION BOOM &Ccedil / etin, Bet&uuml / l M.S, Department of Mechanical Engineering Supervisor : Prof. Dr. Eres S&Ouml / YLEMEZ August 2007, 96 pages Excavators are used for many purposes. Some of these are digging, drilling, breaking and demolition. A demolition excavator boom consists of 3-piece boom which is different in form and construction from a 2-piece boom used in standard excavator. The aim of this thesis is to design a demolition boom for hydraulic excavator with operation weight of 30 ton. With this construction a higher reach is gained. Design of the demolition boom consists of three stages. Firstly the mechanism design is performed to determine the basic link dimensions. In the second step the structural shape of the boom is estimated to perform static stress analysis. The EXCEL program is chosen due to the ease of repetative calculations and applying the changes in structure parameters. The demolition boom is modeled by PRO-ENGINEER, and consequently the model is analyzed by using a Finite Element Analysis (FEA) in MSC.Marc-Mentat. According to the FEA results the model is revised. Keywords: Demolition Excavator, Mechanism Design, Structural design
28

Acoustical Analysis Of Exhaust Mufflers For Earth-moving Machinery

Olgar, Tarik 01 September 2009 (has links) (PDF)
This study concerns with acoustical analysis of exhaust mufflers for earth-moving machinery. The study arises from the fact that there is a need for further noise reduction emitted by earth-moving machinery produced by Hidromek Inc. in order to be on the safe side of the limits stated in European Noise Directive 2000/14/EC. The acoustical performance of the muffler is investigated both experimental and numerical means. A three-dimensional finite element method is performed to calculate the transmission loss. An experimental setup is also developed to measure the transmission loss. Chung-Blaser, two-source and two-load methods are applied to measure the transmission loss of single expansion chamber with extended inlet/outlet. The experimental setup is verified by comparing the test results obtained by two-load method with one-dimensional analytical solution obtained by transfer matrix method. Transmission loss of the muffler of interest, calculated by finite element method is compared with the experimental results. Sound power level of earth-moving machinery and insertion loss of the muffler is measured to investigate the acoustical performance of the muffler. These results can then be served as guidance for the acoustical design of a muffler.
29

Design Considerations And Performance Evaluation Of A Surge Tank For Diaphragm Pump Operation

Ozdemir, Sahika 01 September 2010 (has links) (PDF)
This thesis is performed to evaluate the design consideration and performance characteristics of a surge tank for a diaphragm pump operation and to evaluate the proper volume and inlet area of surge tank in order to reduce the pulsations of the discharge pressure. An experimental set up is constructed for a three diaphragm positive displacement pump and the experiments are conducted afterwards. The surge tanks having different volumes and the surge tank inlet area configurations are tested in order to achieve the minimum peak to peak pulsations. Experiments showed that among the different sizes of the surge tanks, the minimum peak to peak pulsations are achieved with the largest volume which is the original surge tank of the test pump used by the pump manufacturer. This result is supported by the literature which states that with greater surge tank size the magnitude of pulsations can be diminished more. Regarding the surge tank inlet area design / among the eight different adaptors a proper inlet area value is concluded having the minimum peak to peak pulsations also smaller than the original configuration.
30

Multi-scale multi-physics model and hybrid computational framework for predicting dynamics of hydraulic rod seals

Thatte, Azam 25 October 2010 (has links)
Rod seals are one of the most critical components of hydraulic systems. However, the fundamental physics of seal behavior is still poorly understood and the seal designers have virtually no analytical tools with which to predict the behavior of potential seal designs. In pursuit of a comprehensive physics based seal analysis/ design tool, in this work, a multi-scale multi-physics (MSMP) seal model is developed. The model solves the transient problem involving macro-scale viscoelastic deformation mechanics, macro-scale contact, micro-scale two phase fluid mechanics in the sealing zone, micro-scale asperity contact mechanics and micro-scale deformation mechanics of the sealing edge in a strongly coupled manner. The model takes into account surface roughness, mixed lubrication, cavitation and two phase flow, transient squeeze film effects and the dynamic operation as well as the effect of macro/micro/nano scale viscoelasticity. A hybrid finite element-finite volume-statistical computational framework is developed to solve the highly coupled multi-physics interactions of the MSMP model simultaneously. Surface characterization experiments are performed to extract the parameters like RMS roughness, asperity density, autocorrelation length and asperity radius needed by MSMP. To remove the high frequency noise without removing the high frequency real surface features, a wavelet transform based adaptive surface extraction method is implemented. Dynamic mechanical analysis (DMA) is performed to extract the macro-scale viscoelastic parameters of the seal. Through atomic force microscopy (AFM) experiments, the local micro/nano scale elastic moduli were found to be varying within two orders of magnitude higher than the bulk of the polymer. Significant differences in local stiffness, adhesion and the relaxation time scales of individual surface asperities were also observed. With the MSMP model, dynamic seal performance was analyzed. The results confirmed the mixed lubrication and the effect of surface roughness. Thicker fluid films during instroke and cavitation during the outstroke were found to be important for non-leakage. Seal behavior was a function of the complex dual dependence on the time varying sealed pressure and hydrodynamic effects. Viscoelasticity is seen to critically affect the leakage and friction characteristics. It produces thicker fluid films and produces a significant increase in Poiseuille component of flow during instroke. Ignoring viscoelasticity leads to under-prediction of the time required to reach the zero leakage state. Several high pressure - high frequency sealing applications were analyzed. In such applications, a new phenomenon of "secondary contact" was observed. Viscoelastic creep was seen to critically affect the contact pressure and hence the friction characteristics. In high frequency applications, viscoelasticity induced significant differences in Poiseuille flow and friction force from cycle to cycle. Cycle frequency was seen to play an important role in governing visco-elastohydrodynamics and the leakage of such seals. The seals need to be designed by considering the relationship between relaxation time scales of the polymer and the cycle frequencies. Study also revealed the presence of characteristics like "critical temperature" and "critical frequency". Using the multi-physics modeling capability of MSMP framework, several novel seal designs using smart materials like piezo-ceramic embedded polymers are proposed and analyzed. The MSMP computational framework developed here has a great potential to be used as a stand-alone seal design and analysis software in academic and industrial research.

Page generated in 0.08 seconds