• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 239
  • 133
  • 83
  • 25
  • 19
  • 16
  • 16
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 613
  • 134
  • 129
  • 96
  • 86
  • 81
  • 77
  • 74
  • 73
  • 65
  • 62
  • 61
  • 57
  • 57
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
342

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
343

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
344

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
345

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
346

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
347

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
348

Totara Valley micro-hydro development : a thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science in Renewable Energy Engineering, Massey University, Palmerston North, New Zealand

Donnelly, David Ronald Unknown Date (has links)
This study focuses on the design, construction and operation of a distributed generation system based on micro-hydro technology. The project is sited in the Totara Valley, a small rural community approximately 70km from the Massey University, Turitea campus, Palmerston North. The Massey University Centre for Energy Research (MUCER) has a long history of renewable energy research within the Totara Valley community. This project complements these existing schemes and provides a foundation for future research into distributed generation technologies. The project encompasses the following objectives: - to gain practical experience in the design, engineering and implementation of a distributed generation system in rural New Zealand; - to evaluate contemporary micro-hydro technology and compare the performance of this equipment in a theoretical and practical context; - to identify barriers that hinder the widespread adoption of micro-hydro systems in rural New Zealand; - to develop a spreadsheet based life cycle costing tool. The results from this study demonstrate that economic considerations are the fundamental aspect to be considered when assessing the long-term viability of these projects. The viability of micro-hydro projects are primarily determined by four factors: - the volume and head (height) of water available above the turbine site; - the length and therefore the cost of the pipeline required for transporting water to the turbine; - the legal and administrative costs involved in obtaining a resource consent to maintain access to the water resources; - the prices received and paid for electricity. Considerable charges were payable to the local authority to secure and maintain the right to harness the water resources at this site. This cost contributed considerable risk to the project and creates a significant barrier to establishing similar systems at other sites. The reduction of resource consent charges to levels that fairly reflect the negligible environmental impacts of these projects would encourage the adoption of this technology and deliver benefits to rural New Zealand communities.
349

Jämförande analys av driftsäkerhet medRTU och PLC / Comparative analysis of the operation safety of the RTU and PLC

Albadri, Rand January 2015 (has links)
Examensarbetet kommer att göra en jämförande analys av driftsäkerhet med trådade signaler till en Remote Terminal Unit (RTU) och en Programmable Logic Controller (PLC) med busstyrning. Rapporten genomfördes som ett uppdrag av Skellefteå Kraft AB för att se om det möjligt att byta till PLC- med busstyrning. Rapporten redogör för grundläggande beskrivning för skillnaden mellan de här två system och kommer att undersöka vilken som är driftsäkrare och lönsammare med hänsyn till krav enligt Svenska Kraftföretagens riktlinjer för dammsäkerhet (Ridas).Med hjälp av kurslitteratur, ABB handboken, internet websidor samt intervjuar med Skellefteå Kraft AB:s personal har arbetets resultat visat att busstyrning med PLC kommer att fungera driftsäkert samt kommer att bli lönsamt jämfört med trådade signaler till RTU. Resultat visat även att det finns ingenting som hindrar att installera busstyrning enligt Ridas men vissa funktioner bör installeras. Rapporten är avgränsat genom att inte ta upp eventuella krav från miljöbalken. / This thesis will make a comparative analysis of the operation safety of the wire connection to Remote Terminal Unit (RTU) and Programmable Logic Controller (PLC) with bus-controller. The report describes the basic description of the difference between these two systems and will explore which is safer and more economic with consideration to qualification according to Swedish energy companies' guidelines for dam safety (Ridas).Through course literature, ABB Bok, internet web sits and interviews with Skellefteå Kraft AB staff the result of this report have been created.The report results prove that PLC with bus-controller will operate operationally safe and profitable compared to wire connection to RTU. Results also showed that there is nothing which prevents to install bus-controller according to RIDAS but certain features should be installed.
350

Caractérisation expérimentale et modélisation multi-échelles du tuilage de cartons ondulés / Experimental characterization and multiscale modeling of the curl of corrugated boards

Roux, Gustave 15 December 2015 (has links)
Les objectifs de cette thèse sont (i) de caractériser expérimentalement les phénomènes physiques responsables du tuilage des cartons ondulés observé en usine et (ii) d’en proposer une modélisation hygro-mécanique pertinente. Afin de répondre à ces objectifs, des essais instrumentés ont été réalisés en usine. Ces essais originaux ont permis de mesurer en continu (i) les évolutions de l’humidité relative et la température au sein des piles de cartons ondulés, et (ii) l’évolution du tuilage des plaques de carton ondulé au sein des piles grâce à une suivi par imagerie. Les résultats obtenus ont été analysés au regard des paramètres procédé. Afin de mieux appréhender le phénomène de tuilage observé, qui est par nature multi-échelle (échelle du papier et du carton ondulé) et multi-physique (humidité relative, température, mécanique), des essais en laboratoire (hygroexpansion, traction, flexion) à différentes humidités relatives ont été développés et mis en œuvre afin de caractériser le comportement hygro-mécanique de différents papiers et cartons ondulés. Des essais de tuilage originaux, couplés à des mesures par imagerie, ont été réalisés et ont pu mettre en évidence l’influence de l’humidité relative et de la composition des cartons ondulés sur le tuilage. En s’appuyant sur ces expériences, une modélisation 1D du tuilage, basée sur la théorie des composites sandwich, a été proposée. Ce modèle a ensuite été comparé aux mesures de tuilage réalisées en laboratoire et en usine. Les premières comparaisons modèle-expérience ont montré la pertinence de la modélisation proposée pour décrire le tuilage du carton ondulé. Un outil permettant d’estimer l’évolution tuilage, à court et moyen terme, dans les encours a été développé et mis en place en cartonnerie afin d’améliorer la maîtrise du tuilage des cartons ondulés. / The objective of this thesis is to (i) experimentally characterize the physical phenomena responsible of curl of corrugated board usually observed during the process and (ii) to propose a hygro-mechanical modeling of the curl. For that purpose, in situ instrumented tests were carried out in the corrugated board factory. These original tests allowed to measure continuously (i) the evolution of the relative humidity and the temperature in stacks of corrugated board, and (ii) the evolution of the curl. This latter one was measured using high quality images and advanced image processing. The obtained results were analyzed in relation to the process parameters. In order to better understand the observed curl phenomenon, which is a multi-scale (scale of papers and corrugated boards) and multi-physics (relative humidity, temperature, mechanics) phenomenon, laboratory tests (hygroexpansion, tensile tests, bending tests) at different relative humidities have been performed in order to characterize the hygro-mechanical behavior of several papers and corrugated boards. Original curl tests, using high quality images and advanced image processing, have been developed and carried out. The obtained results highlight the influence of the relative humidity and the composition of corrugated cardboard on the curl. According to these experimental results, a 1D modeling of the curl, based on the sandwich composite theory, was proposed. This model was then compared to the curl measured in the laboratory and in the corrugated board factory. These first comparisons showed the relevance of the proposed modeling to describe the curl of corrugated board. Finally, a practical tool to estimate the evolution of the curl in the factory has been developed and implemented in the factory to prevent the corrugated board curl.

Page generated in 0.0375 seconds