• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The H-bonding activity of F'- with some phenols

Owen, Nicholas D. S. January 1989 (has links)
No description available.
2

Proton acceptor-proton donor interactions in gases and low temperature matrices

Lewis, Rhobert January 1990 (has links)
The infrared spectra of mixtures of HC1 and the following have been recorded in the gas phase and low temperature matrices: argon, ethene, ethyne, de-benzene, fluorobenzene, CO, CO 2 , SOz, CC1*, CHCls, de-acetone, ethanal, HCN and acrylonitrile. The features which have been measured are: firstly the changes in the integrated intensity of lines in the rotation-vibration spectrum of the fundamental HC1 band as a function of interactions with other components of the mixture, and secondly bands associated with specific interactions forming hydrogen-bonded complexes. The enhancement of HC1 is generally found to vary linearly with the pressure of added gas over a limited pressure range. Assuming that line enhancement is caused by collisionally-induced rotation-translation energy exchange to or from the HC1 molecule, a combination of expressions derived from Ehrenfest's Adiabatic Principle and the "rigid rotor" approximation leads to a model which qualitatively predicts the enhancements observed. The model also rationalises the enhancement of HCN and SOa absorptions by HC1. Examination of the experimentally determined data leads to the conclusion that the total intermolecular force between the monomer base and HC1 controls the degree of enhancement but it is concluded that there is no general connection between the degree of HC1 enhancement and hydrogen-bond strength. Hydrogen-bonded complexes were examined in the gas and argon matrix phases and the shifts in the modified hydrogen chloride stretch compared for various bases. The spectra of pi-complexes formed between HC1 and ethene, ethyne and benzene were found to be detectable by low-resolution infrared spectroscopy at room temperature. Complexation of HCN, he-acetone and de-acetone with HC1 caused CN and C=O band shifts. The Chem-X molecular modelling program was evaluated by using it to predict the geometry of simple complexes for which experimental data is already available. It is concluded that the program requires more development before it can be confidently used as a theoretical aid with which to study hydrogen-bonded dimers.
3

Design and Synthesis of Novel Liquid Crystals and Organic Semiconductors

Wang, Kunlun 25 April 2017 (has links)
No description available.
4

Investigations Of Electron States Of Molecular Complexes By UV Photoelectron And Electron Energy Loss Spectroscopies And Ab-initio MO Calculations

Ananthavel, S P 03 1900 (has links) (PDF)
No description available.
5

Implementation and application of basis set superposition error-correction schemes to the theoretical modeling of weak intermolecular interactions

Salvador Sedano, Pedro 20 December 2001 (has links)
This thesis deals with the so-called Basis Set Superposition Error (BSSE) from both a methodological and a practical point of view. The purpose of the present thesis is twofold: (a) to contribute step ahead in the correct characterization of weakly bound complexes and, (b) to shed light the understanding of the actual implications of the basis set extension effects in the ab intio calculations and contribute to the BSSE debate. The existing BSSE-correction procedures are deeply analyzed, compared, validated and, if necessary, improved. A new interpretation of the counterpoise (CP) method is used in order to define counterpoise-corrected descriptions of the molecular complexes. This novel point of view allows for a study of the BSSE-effects not only in the interaction energy but also on the potential energy surface and, in general, in any property derived from the molecular energy and its derivativesA program has been developed for the calculation of CP-corrected geometry optimizations and vibrational frequencies, also using several counterpoise schemes for the case of molecular clusters. The method has also been implemented in Gaussian98 revA10 package. The Chemical Hamiltonian Approach (CHA) methodology has been also implemented at the RHF and UHF levels of theory for an arbitrary number interacting systems using an algorithm based on block-diagonal matrices. Along with the methodological development, the effects of the BSSE on the properties of molecular complexes have been discussed in detail. The CP and CHA methodologies are used for the determination of BSSE-corrected molecular complexes properties related to the Potential Energy Surfaces and molecular wavefunction, respectively.First, the behaviour of both BSSE-correction schemes are systematically compared at different levels of theory and basis sets for a number of hydrogen-bonded complexes. The Complete Basis Set (CBS) limit of both uncorrected and CP-corrected molecular properties like stabilization energies and intermolecular distances has also been determined, showing the capital importance of the BSSE correction. Several controversial topics of the BSSE correction are addressed as well. The application of the counterpoise method is applied to internal rotational barriers. The importance of the nuclear relaxation term is also pointed out. The viability of the CP method for dealing with charged complexes and the BSSE effects on the double-well PES blue-shifted hydrogen bonds is also studied in detail. In the case of the molecular clusters the effect of high-order BSSE effects introduced with the hierarchical counterpoise scheme is also determined.The effect of the BSSE on the electron density-related properties is also addressed. The first-order electron density obtained with the CHA/F and CHA/DFT methodologies was used to assess, both graphically and numerically, the redistribution of the charge density upon BSSE-correction. Several tools like the Atoms in Molecules topologycal analysis, density difference maps, Quantum Molecular Similarity, and Chemical Energy Component Analysis were used to deeply analyze, for the first time, the BSSE effects on the electron density of several hydrogen bonded complexes of increasing size. The indirect effect of the BSSE on intermolecular perturbation theory results is also pointed out It is shown that for a BSSE-free SAPT study of hydrogen fluoride clusters, the use of a counterpoise-corrected PES is essential in order to determine the proper molecular geometry to perform the SAPT analysis.

Page generated in 0.0807 seconds