Spelling suggestions: "subject:"aydrogen addition"" "subject:"bydrogen addition""
1 |
Turbulent Premixed Flame Kernel Growth During The Early Stages Using Direct Numerical SimulationDunstan, T. D. January 2008 (has links)
In this thesis Direct Numerical Simulation (DNS) is used to investigate the development
of turbulent premixed flame kernels during the early stages of growth typical of the
period following spark ignition. Two distinct aspects of this phase are considered: the
interaction of the expanding kernel with a field of decaying turbulence, and the
chemical and thermo-diffusive response of the flame for different fresh-gas
compositions. In the first part of the study, three-dimensional, repeated simulations with
single-step chemistry are used to generate ensemble statistics of global flame growth.
The surface-conditioned mean fluid-velocity magnitude is found to vary significantly
across different isosurfaces of the reaction progress variable, and this is shown to lead to
a bias in the distribution of the Surface Density Function (SDF) around the developing
flame. Two-dimensional simulations in an extended domain indicate that this effect
translates into a similar directional bias in the Flame Surface Density (FSD) at later
stages in the kernel development. Properties of the fresh gas turbulence decay are
assessed from an independent, non-reacting simulation database.
In the second part of this study, two-dimensional simulations with a detailed 68-step
reaction mechanism are used to investigate the thermo-diffusive response of pure
methane-air, and hydrogen-enriched methane-air flames. The changes in local and
global behaviour due to the different laminar flame characteristics, and the response of
the flames to strain and curvature are examined at different equivalence ratios and
turbulence intensities. Mechanisms leading to flame quenching are discussed and the
effect of mean flame curvature is assessed through comparison with an equivalent
planar flame. The effects of hydrogen addition are found to be particularly pronounced
in flame kernels due to the higher positive stretch rates and reduced thermo-diffusive
stability of hydrogen-enriched flames.
|
2 |
Turbulent premixed flame kernel growth during the early stages using direct numerical simulationDunstan, T. D. January 2008 (has links)
In this thesis Direct Numerical Simulation (DNS) is used to investigate the development of turbulent premixed flame kernels during the early stages of growth typical of the period following spark ignition. Two distinct aspects of this phase are considered: the interaction of the expanding kernel with a field of decaying turbulence, and the chemical and thermo-diffusive response of the flame for different fresh-gas compositions. In the first part of the study, three-dimensional, repeated simulations with single-step chemistry are used to generate ensemble statistics of global flame growth. The surface-conditioned mean fluid-velocity magnitude is found to vary significantly across different isosurfaces of the reaction progress variable, and this is shown to lead to a bias in the distribution of the Surface Density Function (SDF) around the developing flame. Two-dimensional simulations in an extended domain indicate that this effect translates into a similar directional bias in the Flame Surface Density (FSD) at later stages in the kernel development. Properties of the fresh gas turbulence decay are assessed from an independent, non-reacting simulation database. In the second part of this study, two-dimensional simulations with a detailed 68-step reaction mechanism are used to investigate the thermo-diffusive response of pure methane-air, and hydrogen-enriched methane-air flames. The changes in local and global behaviour due to the different laminar flame characteristics, and the response of the flames to strain and curvature are examined at different equivalence ratios and turbulence intensities. Mechanisms leading to flame quenching are discussed and the effect of mean flame curvature is assessed through comparison with an equivalent planar flame. The effects of hydrogen addition are found to be particularly pronounced in flame kernels due to the higher positive stretch rates and reduced thermo-diffusive stability of hydrogen-enriched flames.
|
3 |
Reducing emissions of a large bore two stroke cycle engine using a natural gas and hydrogen mixtureVan Norden, Vincent Ray January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Kirby S. Chapman / The United States Environmental Protection Agency (EPA) continues to tighten pollutant emission regulations throughout the United States. As a result, the need to reduce air pollutants such as nitrogen oxides (NO[subscript]x) and carbon monoxide (CO) remains a challenge for pipeline operators. NO[subscript]x formation is primarily a function of in-cylinder combustion temperatures. A challenge for engine researchers is to identify methods to lower combustion temperatures while maintaining complete combustion. Blending hydrogen into an engine's fuel can lower in-cylinder combustion temperatures and reduce pollutant emissions. Hydrogen has a wider flammability range in comparison to natural gas, which allows for leaner engine operation and lower combustion temperatures. Specifically, the very high molecular diffusivity of hydrogen creates a more uniform mixture of fuel and air. Hydrogen also has very low ignition energy, which translates into easier combustion. This paper presents test results of using hydrogen as a fuel additive for a large bore, two stroke cycle, single cylinder, natural gas fueled Ajax engine in a test laboratory. The engine was first operated at the test point on pure natural gas and allowed to stabilize. Then a mixture of hydrogen and natural gas at various molar percentages was introduced. The engine was operated entirely on the blended fuel without a pre-combustion chamber first. Next, a pre-combustion chamber was installed and the blended fuel was supplied to it while the main combustion chamber operated on pure natural gas. Engine and emissions data were recorded and physical observations were also noted, such as engine misfires. Results showed that the addition of hydrogen into the fuel gas without the use of a pre-combustion chamber reduced emissions. The addition of the pre-combustion chamber reduced NO[subscript]x emissions without the use of hydrogen. For both configurations, the engine ran smoother with no noticeable increase in misfires or detonation. The pollutant emission reduction and engine combustion stability suggest that hydrogen as a fuel additive would be a good method to meet emissions requirements.
|
4 |
希薄燃焼に及ぼす水素添加の効果 (第2報, 管状火炎の特性と輸送過程に及ぼす回転強さの影響)山本, 和弘, YAMAMOTO, Kazuhiro, 丸山, 昌幸, MARUYAMA, Masayuki, 小沼, 義昭, ONUMA, Yoshiaki 25 January 1999 (has links)
No description available.
|
5 |
希薄燃焼に及ぼす水素添加の効果 (第3報, 反応機構に着目した管状火炎の数値計算)山本, 和弘, YAMAMOTO, Kazuhiro, 小沼, 義昭, ONUMA, Yoshiaki 25 August 1999 (has links)
No description available.
|
6 |
希薄燃焼に及ぼす水素添加の効果山本, 和弘, YAMAMOTO, Kazuhiro, 丸山, 昌幸, MARUYAMA, Masayuki, 小沼, 義昭, ONUMA, Yoshiaki 25 June 1998 (has links)
No description available.
|
7 |
An experimental study of the global and local flame features created by thermoacoustic instabilityZhang, Jianan 01 August 2017 (has links)
The current research focuses on the thermoacoustic instability of lean premixed combustion, which is a promising technique to inhibit Nitrogen Oxides (NOx) emission. Thermoacoustic instability describes the condition that the pressure oscillation is unusually high in the combustion device. It results from the coupling between pressure fluctuation and heat release oscillation, which experiences significant temporal and spatial variations. These variations are closely related to the flame shape deformation and critical in determining the trend of the global instability. Therefore, the current study aims to examine both the global and local flame features created by thermoacoustic instability.
The first part of the work is studying the unstable flame induced by artificial acoustic perturbation. The particular focus is on the global and local heat release rate oscillation. In the experiment, the global heat release rate oscillation was indicated by the hydroxyl (OH*) chemiluminescence captured with a photomultiplier tube (PMT). On the other hand, the flame shape and the local mean heat release rate were examined with flame surface density (FSD), which was calculated with the images captured with the planar laser-induced fluorescence of the hydroxide radical (OH-PLIF) method. The main analysis methods used in the current research are Rayleigh criterion and proper orthogonal decomposition (POD), which can efficiently capture the dominant oscillation mode of the flame.
The acoustic perturbation study first examined the effect of pressure variation (0.1 - 0.4 MPa) on the flame response to the acoustic perturbation. Results show that the elevated pressure intensifies the fundamental mode of heat release oscillation when the heat release oscillation is in phase with the pressure fluctuation; otherwise, the fundamental oscillation tends to be inhibited. The pressure affects both the strength and the distribution of the local fundamental and the first harmonic oscillations. Furthermore, the effect of the pressure on the distribution is larger than that on the strength.
The study also investigated the role of Strouhal numbers in characterizing the flame oscillation induced by acoustic perturbation. Results show that the Strouhal number can characterize the changing trend of the oscillation amplitude, whereas the oscillation phase-delay is less dependent on the Strouhal number. The local analysis reveals that the nonlinear flame behavior results from the flame rollup induced by acoustic perturbation. Furthermore, the reconstruction of the global heat release shows that the cancellation of out-of-phase local oscillations can cause a low-level global oscillation. Results also demonstrate that the local heat release oscillation contains intense harmonic oscillations, which are closely associated with the flame rollup. However, the harmonic oscillation is less likely the main reason causing nonlinear flame behavior.
Besides the study with acoustic perturbation, the current study also conducted experimental and modeling studies on the self-excited thermoacoustic instability. The particular focus is examining the effects of hydrogen addition on the instability trend. Results demonstrate that the hydrogen concentration can affect both the oscillation frequency and amplitude. Pressure analysis shows that the low-frequency mode is triggered when the hydrogen concentration is low, whereas a high hydrogen concentration tends to excite a high-frequency mode. Moreover, the frequency tends to increase with an increasing hydrogen concentration. Modeling results illustrate that the change of the oscillation mode, which is determined by the turbulent flame speed, is mainly affected by the delay time between the heat release oscillation and the velocity fluctuation. The modeling work shows that the one-dimensional model is not very efficient in capture the instability trend of the high-frequency mode. It may result from the lack of the knowledge of the mechanism of acoustic damping and flame dynamics.
|
8 |
Analyse expérimentale et simulation numérique de la combustion de prémélanges turbulents CH4+H2+Air / Computational analysis and experimental verification of premixed combustion of hydrogen methane/air mixturesYilmaz, Bariş 22 December 2009 (has links)
L'influence de l'ajout d'hydrogène sur les flammes de premelange pauvre methane-air est simulée dans cette étude. Le modèle de la chambre a haute pression Orleans - ICARE (France), a été développé. Les propriétés du front de flamme sont examinées par deux modèles de combustion turbulente prémélangée, à savoir Zimont et Flamme Cohérente Model (CFM) modèles.Toutes les études de modélisation sont effectués avec le logiciel Fluent et les résultats sont comparés aux expériences. En suite, l'influence de la pression sur les statistiques de la front de flamme prémélangée a été examinée. Les simulations montrent que l'augmentation du ratio d'équivalence a diminué la hauteur des flammes et l'épaisseur de la flamme du méthane/air flames. D'autre part, l’ajout d’hydrogene de mélange pauvre méthane-air a modifié les propriétés de la flamme prémélangée. Lorsque le pourcentage volumique de l'hydrogène dans le mélange est augmenté, la position en hauteur de la flamme est réduite et l'épaisseur de la flamme devient plus mince. En outre, il a été observé que les propriétés de la flamme prémélangée ont été modifiées avec l'opération à des conditions de pression plus élevée. / Hydrogenated premixed methane/air flames under lean conditions are simulated in this study. The model of the high pressure chamber setup of Orleans - ICARE (France) has been developed. The flame front properties are investigated by two turbulent premixed combustion models, Zimont and Coherent Flame Model (CFM) models. All modeling studies are performed with Fluent software and compared to experiments. The influence of the pressure on the premixed flame front statistics has been examined as well. The simulations show that increasing the equivalence ratio decreases the flame tip height and the flame brush thickness for methane/air flames. In addition, enriching the methane-air mixture with hydrogen modifies the premixed flame front properties. When the volumetric percentage of hydrogen in the mixture is increased, the flame-end position is reduced and flame brush thickness becomes thinner. It is also observed that the premixed flame properties have been modified with operation at higher pressure conditions.
|
Page generated in 0.1154 seconds