• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 2
  • Tagged with
  • 25
  • 25
  • 12
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Acoustic In-duct Characterization of Fluid Machines with Applications to Medium Speed IC-engines

Hynninen, Antti January 2015 (has links)
The unwanted sound, noise, can lead to health problems, e.g. hearing loss and stress-related problems. A pre-knowledge of noise generation by machines is of great importance due to the ever-shorter product development cycles and stricter noise legislation. The noise from a machine radiates to the environment indirectly via the foundation structure and directly via the surrounding fluid. A fluid machine converts the energy from the fluid into mechanical energy or vice versa. Examples of the fluid machines are internal combustion engines (IC-engines), pumps, compressors, and fans. Predicting and controlling noise from a fluid machine requires a model of the noise sources themselves, i.e. acoustic source data. In the duct systems connected to the fluid machines, the acoustic source interacts strongly with the system boundaries, and the source characteristics must be described using in-duct methods. Above a certain frequency, i.e. first non-plane wave mode cut-on frequency, the sound pressure varies over the duct cross-section and non-plane waves are introduced. For a number of applications, the plane wave range dominates and the non-plane waves can be neglected. But for machines connected to large ducts, the non-plane wave range is also important. In the plane wave range, one-dimensional process simulation software can be used to predict, e.g. for IC-engines, the acoustic in-duct source characteristics. The high frequency phenomena with non-plane waves are so complicated, however, that it is practically impossible to simulate them accurately. Thus, in order to develop methods to estimate the sound produced, experimental studies are also essential. This thesis investigates the acoustic in-duct source characterization of fluid machines with applications to exhaust noise from medium speed IC-engines.  This corresponds to large engines used for power plants or on ships, for which the non-plane wave range also becomes important. The plane wave source characterization methods are extended into the higher frequency range with non-plane waves. In addition, methods to determine non-plane wave range damping for typical elements in exhaust systems, e.g. after-treatment devices, are discussed. / <p>QC 20151119</p>
2

A Computational Study of Diesel and Diesel-Methane Dual Fuel Combustion in a Single-Cylinder Research Engine

Jha, Prabhat Ranjan 11 August 2017 (has links)
Dual fuel combustion is one strategy to achieve low oxides of nitrogen and soot emissions while maintaining the fuel conversion efficiency of IC engines. However, it also suffers from high engine-out carbon monoxide and unburned hydrocarbon emissions, and the incidence of knock at high loads. The present work focused on CFD simulation of diesel-methane dual fuel combustion in a single-cylinder research engine (SCRE). For pure diesel combustion, a load sweep of 2.5 bar brake mean effective pressure (BMEP) to 7.5 bar BMEP was performed at a constant engine speed of 1500 rpm and a diesel injection pressure of 500 bar. For diesel-methane dual fuel combustion, a methane percent energy substitution sweep was performed from 30% to 90 % at 1500 rpm, 3.3 bar BMEP, 500 bar Pinj, and 355 crank angle degrees (CAD) diesel injection timing. Combustion, performance, and emissions results are presented and compared with experimental data where possible.
3

Modelling, Simulation and Optimisation of Asymmetric Rotor Profiles in Twin-screw Superchargers

Ilie, Katherine-Rodica, Katherine.ilie@rmit.edu.au January 2007 (has links)
There is a growing recognition worldwide of the need for more powerful, smaller petrol engines, capable of delivering the higher picking power of larger engines, yet still being economical and environmentally friendly when used for day-to-day driving. An engineering solution for more efficient engines has been considered by research so far. It has been identified that superchargers can potentially improve the performance of automotive engines; therefore research has focused on developing superchargers and supercharger components with higher efficiency. Of particular interest to the research presented in this thesis has been the twin-screw supercharging compressor with design adapted for automotive use (the twin-screw supercharger). The performance of this supercharger type depends on the volume and total losses of the air flow through the supercharger rotors more than on any other aspects of its behaviour. To accurately predict the efficiency of the twin-screw su percharger for matching a particular engine system, accurate supercharger design is required. The main objective of this research was the investigation of the existing limitations of twin-screw superchargers, in particular leakage and reduced efficiency, leading to the development of optimal asymmetric rotor profiles. This research has been completed in four stages defining an innovative rotor design method. The parametric three-dimensional geometric model of twin-screw supercharger rotors of any aspect ratio was developed. For model validation through visualisation, CAD rotor models with scalable data were generated in commercial CAD software and calibrated experimentally by Laser Doppler Velocimetry (LDV) tests. Calibrated rotor profile data can be transferred into CAD-CFD interface for flow simulation and performance optimisation. Through the application of this new rotor design method, new opportunities are created for the twin-screw supercharger design practice, making it a part of the engineering solution for more efficient engines.
4

Turbulent Premixed Flame Kernel Growth During The Early Stages Using Direct Numerical Simulation

Dunstan, T. D. January 2008 (has links)
In this thesis Direct Numerical Simulation (DNS) is used to investigate the development of turbulent premixed flame kernels during the early stages of growth typical of the period following spark ignition. Two distinct aspects of this phase are considered: the interaction of the expanding kernel with a field of decaying turbulence, and the chemical and thermo-diffusive response of the flame for different fresh-gas compositions. In the first part of the study, three-dimensional, repeated simulations with single-step chemistry are used to generate ensemble statistics of global flame growth. The surface-conditioned mean fluid-velocity magnitude is found to vary significantly across different isosurfaces of the reaction progress variable, and this is shown to lead to a bias in the distribution of the Surface Density Function (SDF) around the developing flame. Two-dimensional simulations in an extended domain indicate that this effect translates into a similar directional bias in the Flame Surface Density (FSD) at later stages in the kernel development. Properties of the fresh gas turbulence decay are assessed from an independent, non-reacting simulation database. In the second part of this study, two-dimensional simulations with a detailed 68-step reaction mechanism are used to investigate the thermo-diffusive response of pure methane-air, and hydrogen-enriched methane-air flames. The changes in local and global behaviour due to the different laminar flame characteristics, and the response of the flames to strain and curvature are examined at different equivalence ratios and turbulence intensities. Mechanisms leading to flame quenching are discussed and the effect of mean flame curvature is assessed through comparison with an equivalent planar flame. The effects of hydrogen addition are found to be particularly pronounced in flame kernels due to the higher positive stretch rates and reduced thermo-diffusive stability of hydrogen-enriched flames.
5

Turbulent premixed flame kernel growth during the early stages using direct numerical simulation

Dunstan, T. D. January 2008 (has links)
In this thesis Direct Numerical Simulation (DNS) is used to investigate the development of turbulent premixed flame kernels during the early stages of growth typical of the period following spark ignition. Two distinct aspects of this phase are considered: the interaction of the expanding kernel with a field of decaying turbulence, and the chemical and thermo-diffusive response of the flame for different fresh-gas compositions. In the first part of the study, three-dimensional, repeated simulations with single-step chemistry are used to generate ensemble statistics of global flame growth. The surface-conditioned mean fluid-velocity magnitude is found to vary significantly across different isosurfaces of the reaction progress variable, and this is shown to lead to a bias in the distribution of the Surface Density Function (SDF) around the developing flame. Two-dimensional simulations in an extended domain indicate that this effect translates into a similar directional bias in the Flame Surface Density (FSD) at later stages in the kernel development. Properties of the fresh gas turbulence decay are assessed from an independent, non-reacting simulation database. In the second part of this study, two-dimensional simulations with a detailed 68-step reaction mechanism are used to investigate the thermo-diffusive response of pure methane-air, and hydrogen-enriched methane-air flames. The changes in local and global behaviour due to the different laminar flame characteristics, and the response of the flames to strain and curvature are examined at different equivalence ratios and turbulence intensities. Mechanisms leading to flame quenching are discussed and the effect of mean flame curvature is assessed through comparison with an equivalent planar flame. The effects of hydrogen addition are found to be particularly pronounced in flame kernels due to the higher positive stretch rates and reduced thermo-diffusive stability of hydrogen-enriched flames.
6

Multiple Injector Concepts for Compression Ignition Engines - Experimental and computational work for lower heat losses, increased efficiency and improved combustion control

Nyrenstedt, Gustav 05 1900 (has links)
Several modern marine engines use multiple injectors for lower heat losses and higher efficiency. However, the heavy-duty vehicles still apply a single injector per cylinder. This work investigates how multiple injectors can be operated in compression ignition heavy-duty engines along with potential benefits from such concepts. The studies aimed to avoid high boundary gas temperatures by having two injectors at the rim of the bowl, in addition to the standard injector. A longer injector-wall distance reduces the amount of hot gases at the boundaries for reduced convective heat losses. Additional degrees of freedom also follows from an increased number of injectors to simplify combustion control. The thesis included CFD simulations, metal engine experiments, and optical engine diagnostics to investigate the efficiency –and emission benefits for two –and three-injector concepts compared to the single-injector approach. The CFD simulations aimed to set beneficial spray angles and chamber geometries for reduced heat losses and reasonable emission levels with and without swirl at different load conditions. A flat bowl with two injectors reduced the heat losses by 4.2 %-points resulting in a direct efficiency increase of 1.9 %-points at middle-load conditions. Metal engine studies confirmed the simulation results by testing two -and three-injector concepts. The higher three-injector flow rate raised efficiency and diminished heat losses while providing low nitric oxide levels. Thus, three injectors lessen the typical trade-off between efficiency and nitric oxides. The thesis further performed single-injector optical engine experiments to investigate combustion control limitations. The results concluded that high soot levels occur from the multiple injections used to achieve isobaric combustion. These high soot levels followed by injecting into fuel-rich zones, which can be avoided by using multiple injectors. Finally, the thesis provides a multiple injector design suitable for heavy-duty production engines.
7

Conditional Moment Closure Model for Ignition of Homogeneous Fuel/Air Mixtures in Internal Combustion Engines

Wang, Wei 01 October 2020 (has links)
No description available.
8

Engine modelling for virtual mapping : development of a physics based cycle-by-cycle virtual engine that can be used for cyclic engine mapping applications, engine flow modelling, ECU calibration, real-time engine control or vehicle simulation studies

Pezouvanis, Antonios January 2009 (has links)
After undergoing a study about current engine modelling and mapping approaches as well as the engine modelling requirements for different applications, a major problem found to be present is the extensive and time consuming mapping procedure that every engine has to go through so that all control parameters can be derived from experimental data. To improve this, a cycle-by-cycle modelling approach has been chosen to mathematically represent reciprocating engines starting by a complete dynamics crankshaft mechanism model which forms the base of the complete engine model. This system is modelled taking into account the possibility of a piston pin offset on the mechanism. The derived Valvetrain model is capable of representing a variable valve lift and phasing Valvetrain which can be used while modelling most modern engines. A butterfly type throttle area model is derived as well as its rate of change which is believed to be a key variable for transient engine control. In addition, an approximation throttle model is formulated aiming at real-time applications. Furthermore, the engine inertia is presented as a mathematical model able to be used for any engine. A spark ignition engine simulation (SIES) framework was developed in MATLAB SIMULINK to form the base of a complete high fidelity cycle-by-cycle simulation model with its major target to provide an environment for virtual engine mapping procedures. Some experimental measurements from an actual engine are still required to parameterise the model, which is the reason an engine mapping (EngMap) framework has been developed in LabVIEW, It is shown that all the moving engine components can be represented by a single cyclic variable which can be used for flow model development.
9

Razvoj metoda dijagnostike usisnog sistema motora sa unutrašnjim sagorevanjem / Development of an IC Engine Intake Air Path Fault Diagnosis Method

Nikolić Nebojša 03 July 2015 (has links)
<p style="text-align: justify;">U radu je razvijen jedan matematički model za simuliranje ponašanja nekih važnih radnih parametara motora SUS, kada u njegovom usisnom sistemu postoje neispravnosti tipa: &bdquo;nepredviđeni ulaz vazduha u usisni kolektor&ldquo;, &bdquo;pogrešno očitavanje senzora masenog protoka vazduha&ldquo;, &bdquo;pogrešno očitavanje senzora pritiska u usisnom kolektoru&ldquo;, &bdquo;pogrešno očitavanje senzora temperature u usisnom kolektoru&ldquo; i &bdquo;umanjen EGR protok&ldquo;. Na osnovu rezultata ovog modela predložen je novi dijagnostički koncept, u okviru kojeg je razvijen jedan model za prepoznavanje pomenutih neispravnosti. Predloženi koncept je proveren na realnim podacima, prikupljenim ispitivanjem jednog stvarnog motora u laboratorijskim uslovima, pri čemu su dobijeni zadovoljavajući rezultati.</p> / <p>A mathematical model capable of simulating some important IC engine operating parameters behavior when a fault in its intake air path exists. The faults considered are of the following types: &bdquo;air leakage in the intake path&ldquo;, &bdquo;faulty mass air flow sensor&ldquo;, &bdquo;faulty manifold absolute pressure sensor&ldquo;, &bdquo;faulty intake air temperature sensor&ldquo; and &bdquo;clogged EGR pipe&ldquo;. Relying on the data obtained by the fault simulator, a novel diagnosis concept is proposed. A model for fault detection and diagnosis was developed in the scope of the concept. The proposed concept was tested on the real data collected from an automobile IC engine in the laboratory conditions and satisfying results were obtained.</p>
10

Simulation of turbulent flames at conditions related to IC engines

Ghiasi, Golnoush January 2018 (has links)
Engine manufacturers are constantly seeking avenues to build cleaner and more ef cient engines to meet ever increasing stringent emission legislations. This requires a closer under- standing of the in-cylinder physical and chemical processes, which can be obtained either through experiments or simulations. The advent of computational hardware, methodologies and modelling approaches in recent times make computational uid dynamics (CFD) an important and cost-effective tool for gathering required insights on the in-cylinder ow, combustion and their interactions. Traditional Reynolds-Averaged Navier-Stokes (RANS) methods and emerging Large Eddy Simulation (LES) techniques are being used as a reli- able mathematical framework tools for the prediction of turbulent ow in such conditions. Nonetheless, the combustion submodels commonly used in combustion calculations are developed using insights and results obtained for atmospheric conditions. However, The combustion characteristics and its interaction with turbulence at Internal combustion (IC) engine conditions with, high pressure and temperatures can be quite different from those in conventional conditions and are yet to be investigated in detail. The objective here is to apply FlaRe (Flamelets revised for physical consistencies) model for IC engines conditions and assess its performance. This model was developed in earlier studies for continuous combustion systems. It is well accepted that the laminar burning velocity, SL, is an essential parameter to determine the fuel burn rate and consequently the power output and ef ciency of IC engines. Also, it is involved in almost all of the sophisticated turbulent combustion models for premixed and partially premixed charges. The burning velocities of these mixtures at temperatures of 850 ≤ T ≤ 950 decrease with pressure up to about 3 MPa as it is well known, but it starts to increase beyond this pressure. This contrasting behaviour observed for the rst time is explained and it is related to the role of pressure dependent reaction for iso-octane and involving OH and the in uence of this radical on the fuel consumption rate. The results iv seem to suggest that the overall order of the combustion reaction for iso-octane and gasoline mixture with air is larger than 2 at pressures higher than 3 MPa. The FlaRe combustion is used to simulate premixed combustion inside a spark-ignition engine. The predictive capabilities of the proposed approach and sensitivity of the model to various parameters have been studied. FlaRe approach includes a parameter βc representing the effects of ame curvature on the burning rate. Since the reactant temperature and pressure inside the cylinder are continually varying with time, the mutual in uence of ame curvature and thermo-chemical activities may be stronger in IC engines and thus this parameter is less likely to be constant. The sensitivity of engine simulation results to this parameter is investigated for a range of engine speed and load conditions. The results indicate some sensitivity and so a careful calibration of this parameter is required for URANS calculation which can be avoided using dynamic evaluations for LES. The predicted pressure variations show fair agreement with those obtained using the level-set approach. DNS data of a hydrogen air turbulent premixed ame in a rectangular constant volume vessel has been analysed to see the effect of higher pressure and temperature on the curvature parameter βc. Since the reactant temperature and pressure inside the cylinder are continually varying with time, the mutual in uence of ame curvature and thermo-chemical activities are expected to be stronger in IC engines and thus the parameter βc may not be constant. To shed more light on this, two time steps from the DNS data has been analysed using dynamic βc procedure. The results show that the effect of higher pressure and temperature need to be considered and taken into account while evaluating βc. When combustion takes place inside a closed vessel as in an IC engine the compression of the un-burnt gases by the propagating ame causes the pressure to rise. In the nal part of this thesis, the FlaRe combustion model is implemented in a commercial computational uid dynamics (CFD) code, STAR-CD, in the LES framework to study swirling combustion inside a closed vessel. Different values of βc has been tested and the need for dynamic evaluation is observed.

Page generated in 0.0493 seconds