• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 10
  • 6
  • 2
  • Tagged with
  • 107
  • 107
  • 107
  • 25
  • 19
  • 14
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Hydrogen production through water gas shift reaction over nickel catalysts

Haryanto, Agus, January 2008 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Agricultural and Biological Engineering. / Title from title screen. Includes bibliographical references.
72

Lifecycle analysis of air quality impacts of hydrogen and gasoline transportation fuel pathways

Wang, Guihua. January 1900 (has links)
Thesis (Ph.D. in Civil and Environmental Engineeering)--University of California, Davis, 2008. / Text document in PDF format. Title from PDF title page (viewed on August 26, 2009). "September 2008." Includes bibliographical references (p. 150-154).
73

Optimizing the design of biomass hydrogen supply chains using real-world spatial distributions a case study using California rice straw /

Parker, Nathan C. January 1900 (has links)
Thesis (M.S.)--University of California, Davis, 2007. / Text document in PDF format. Title from PDF title page (viewed on August 28, 2009). "Received by ITS-Davis: September 2007"--Publication detail webpage. Includes bibliographical references (p. 114-116).
74

Hydrogen station siting and refueling analysis using geographic information systems a case study of Sacramento County /

Nicholas, Michael A. January 1900 (has links)
Thesis (M.S.)--University of California, Davis, 2004. / Text document in PDF format. Title from PDF title page (viewed on September 12, 2009). "Received by ITS-Davis: December 2004"--Publication detail webpage. Includes bibliographical references (p. 62-66).
75

A model of degredation in a polymer electrolyte membrane /

King, C. Jordan. Unknown Date (has links)
Thesis (M.S.)--Humboldt State University, 2009. / Includes bibliographical references (leaves 56-58). Also available via Humboldt Digital Scholar.
76

The Icelandic Example: Planning for Hydrogen Fueled Transportation in Oregon / Planning for Hydrogen Fueled Transportation in Oregon

Fisher, Jeffrey Dean, 1966- 06 1900 (has links)
xii, 91 p. :ill. (some col.), maps. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / The ability to provide an adequate supply ofrenewable energy necessary to offset the emissions of"zero emission" vehicles is of importance for Oregon's planners and policy makers. An increase in electricity generation caused by the electricity required for zero-emissions hydrogen fuel cell vehicles will result in an increase in greenhouse gas emissions ifrenewable energy is not installed to meet hydrogen fuel cell needs. What are the renewable energy implications for Oregon planners to consider for meeting future fuel cell zero emission vehicle (ZEV) needs? Work done in Iceland can serve as an example for Oregon's need for renewable energy to meet ZEV needs. Icelandic data about hydrogen generation and the renewable energy requirements necessary for ZEVs at the Gtj6thaIs hydrogen fueling station set a benchmark for Oregon planners to consider when figuring the impact of ZEVs. / Committee in Charge: Dr. Robert F. Young, Chair; Dr. Greg Bothun; Mr. Roger Ebbage
77

Isolamento e identificação de microrganismos produtores de hidrogênio a partir do glicerol residual

Poleto, Liliane 14 November 2014 (has links)
Um dos grandes desafios para os próximos anos é desenvolver alternativas de produção para energias sustentáveis. O biodiesel vem se posicionando como uma opção para a substituição dos combustíveis fósseis. Sua produção se dá pela transesterificação entre uma gordura e um monoálcool, liberando glicerol, que corresponde a 10% do volume da reação. Grandes incrementos na produção de biodisel resultarão em volumes proporcionais de glicerol residual. Estudos têm mostrado que bactérias anaeróbias estritas e bactérias fermentativas são capazes de produzir hidrogênio, um combustível de alto valor energético, que não gera gases poluentes durante a sua queima. Visto a importância de aumentar o valor agregado do glicerol residual, o presente trabalho teve como objetivo isolar e identificar por técnicas moleculares, bactérias presentes em lodos de estações de tratamento de resíduos, capazes de produzir hidrogênio utilizando glicerol residual da indústria de biodiesel como fonte de carbono. As amostras foram submetidas a choque térmico para eliminação de bactérias hidrogenotróficas, crescidas em meio contendo glicerol em condições de anaerobiose e analisadas para a formação de hidrogênio. Foram identificadas por sequenciamento do gene 16S rRNA, quinze espécies bacterianas capazes de crescer em meio com glicerol, sendo que destas nove apresentaram capacidade de produção de hidrogênio, correspondendo a Enterobacter ludwigii, Shigella sonnei, Bacillus licheniformis, Bacillus amyloliquefaciens, Staphylococcus warneri, Alcaligenes faecalis, Bacillus subtilis, Bacillus atrophaeus e Citrobacter freundii. Os isolados de Bacillus amyloliquefaciens mostraram maior rendimento na produção de hidrogênio com valores de 0,50±0,20 mol H2/mol de glicerol, utilizando o meio enriquecido com 1,5% de glicerol residual. Adicionalmente, foi realizada análise de BLAST para verificar a presença dos genes HycC, HycE, HycF, HyfC, HyfF e HyfH relacionados à produção de hidrogênio. Este estudo foi desenvolvido utilizando apenas os microrganismos do gênero Bacillus, uma vez que, dentre os microrganismos isolados, apenas os Bacillus apresentam sequenciamento completo disponível na rede de bioinformática. Foi verificado que B. amyloliquefaciens, B. licheniformis e B. artrophaeus não possuem os genes específicos analisados, mas estes genes possuem similaridade com outros genes e proteínas que parecem desempenhar funções no transporte de hidrogênio para exterior da célula. Os resultados indicam que existe um grande potencial para a seleção de bactérias produtoras de hidrogênio nos efluentes avaliados que são capazes de metabolizar o glicerol residual com a geração de hidrogênio, como combustível de energia renovável. / Submitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2015-02-12T12:38:56Z No. of bitstreams: 1 Dissertacao Liliane Poleto.pdf: 3051065 bytes, checksum: f7cee4bf2c3f4e2568188279532c88d8 (MD5) / Made available in DSpace on 2015-02-12T12:38:56Z (GMT). No. of bitstreams: 1 Dissertacao Liliane Poleto.pdf: 3051065 bytes, checksum: f7cee4bf2c3f4e2568188279532c88d8 (MD5) / Petrobras / One of the major challenges for the coming years is to develop alternative forms of production for sustainable energy. The biodiesel is positioning itself as an option for the replacement of fossil fuels. Its production is by transesterification between a fat and a monoalcohol, releasing glycerol, which corresponds to 10% of the volume of the reaction. Large increases in the production of biodiesel result in proportional amounts of crude glycerol.Studies have shown that strict anaerobic and fermentative bacteria are able to produce hydrogen, a fuel of high energy value, which does not generate polluting gases, during its burning. Given the importance of increasing the added value-added of crude glycerol, the purpose of this study was to isolate and identify by molecular techniques, bacteria present in sewage sludge from waste treatment plants, it is capable of producing hydrogen using crude glycerol of biodiesel industry, as a carbon source. The samples were subjected to thermal shock to eliminate hydrogenotrophic bacterias, grown in the medium containing glycerol under anaerobic conditions and analyzed to produce hydrogen. Were identified by sequencing of the 16S rRNA gene , 15 bacterial species able to grow in medium with glycerol, and from these, nine showed the ability of hydrogen production, corresponding to Enterobacter ludwigii, Shigella sonnei, Bacillus licheniformis, Bacillus amyloliquefaciens, Staphylococcus warneri, Alcaligenes faecalis, Bacillus subtilis, Bacillus atrhopheus and Citrobacter freundii. The Bacillus amyloliquefaciens isolate showed higher yield in the production of hydrogen , with values of 0.50±0.20 mol H2/mol of glycerol, using the enriched medium with 1.5% crude glycerol. In addition, BLAST analysis were performed to check the presence of genes HycC, HycE, HycF, HyfC, HyfF and HyfH related to hydrogen production. This study was developed using microorganisms of genus Bacillus, since, among the isolated microorganisms, only the Bacillus have complete DNA sequencing available. It was found that B. amyloliquefaciens, B. licheniformis and B. artrophaeus do not have the specific genes analyzed, but these genes have similarity with other genes and proteins that appear to perform roles in the transport of hydrogen to outside the cell. The results indicate that there is a great potential for the selection of bacteria producing hydrogen in the effluents evaluated, that are able to metabolize crude glycerol with the generation of hydrogen as a fuel for renewable energy.
78

Produção de hidrogênio através da digestão anaeróbia de glicerol e vinhoto utilizando culturas mistas

Lovatel, Eduardo Ribeiro 21 December 2016 (has links)
O aumento global da utilização de combustíveis tem por consequência maior demanda energética, seja ela renovável ou não. Posto que nossa matriz energética ainda é baseada em combustíveis fosseis, isso significa que há um aumento no impacto ambiental causado pela queima de fontes derivadas de petróleo e carvão. Neste contexto, destaca-se hidrogênio, um gás que pode desempenhar papel significativo na redução das emissões de gases de efeito estufa (GEE) e produção energética limpa, pois a síntese de hidrogênio pode ser realizada a partir de resíduos orgânicos aplicando o processo de digestão anaeróbia. Em nível nacional, dois resíduos se destacam nesse contexto: glicerol e vinhoto. O primeiro é o principal subproduto da indústria do biodiesel, o segundo é o principal resíduo da indústria sucroalcooleira. Assim, essa pesquisa se focou em estabelecer os melhores parâmetros influência no processo de produção de hidrogênio utilizando vinhoto e glicerol em reatores de modo de operação de batelada. Concluiu-se que a produção de hidrogênio somente utilizando vinhoto tem seus melhores resultados usando pH 6,0 e pH 6,5, sendo que o primeiro estudo obteve maior produção total acumulada (7.585 mL H2) e o segundo obteve maior taxa de produção (0,88 mmol H2.gSSV-1.h-1). Os estudos com mistura dos substratos mostram que a produção de H2 pode ser ainda mais eficiente em comparação com vinhoto bruto, sendo que a melhor razão de mistura foi com 80% de DQO decorrente do glicerol e 20% de vinhoto em que houve produção total acumulada de 10.070 mL H2 e 0,85 mmol H2.gSSV-1.h-1. / Submitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2017-03-06T18:39:54Z No. of bitstreams: 1 Dissertacao Eduardo Ribeiro Lovatel.pdf: 2004975 bytes, checksum: fde05a04d0c4b0bbb9d5809c2370476d (MD5) / Made available in DSpace on 2017-03-06T18:39:54Z (GMT). No. of bitstreams: 1 Dissertacao Eduardo Ribeiro Lovatel.pdf: 2004975 bytes, checksum: fde05a04d0c4b0bbb9d5809c2370476d (MD5) Previous issue date: 2017-03-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES. / The fuel use increase in a global scale have caused rising energy demand, whether it's renewable or not. Since our energy matrix is still based on fossil fuels, it also means an increase in the environmental impact caused by burning sources derived from oil and coal. In this context, hydrogen is highlighted, as a gas that could play a significant role in the reduction of greenhouse gas (GHG) emissions and clean energy production, since hydrogen synthesis can be performed from organic waste using the anaerobic digestion process. At the national level, two residues stand out: glycerol and sugarcane vinasse. The first is the main by-product of the biodiesel industry, the second is the main residue of the sugar and ethanol industry. Thus, this research focused on establishing the best influence parameters in the hydrogen production process using vinasse and glycerol in batch mode operation reactors. It was concluded that the production of hydrogen only using vinasse had better results using pH 6.0 and pH 6.5, and the first study obtained higher accumulated total production (7,585 mL H2) and the second obtained a higher specific production rate (0.88 mmol H2.gSSV-1.h-1). The studies with mixture of the substrates shown that H2 production can be even more efficient in comparison with crude vinasse, and the best mixing ratio was with 80% of COD due to glycerol and 20% to vinhoto, in which there was total accumulated production 10.070 mL H2 and 0.85 mmol H2.gSSV-1.h-1.
79

The production of hydrogen from the water gas shift reaction through the use of a palladium-silver membrane reactor

Baloyi, Liberty Ntshuxeko January 2016 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2016. / The Water Gas Shift (WGS) reaction describes the reaction between carbon monoxide and water vapour to produce carbon monoxide and hydrogen. This work describes the application of a Palladium-Silver (Pd-Ag)-based membrane film reactor, wherein the Pd-Ag film was supported by porous stainless steel (PSS), for the potential replacement of the current multi-stage WGS reaction. The objective of this work was to develop a better understanding of impediments which are relevant to the application of Pd-Ag membrane reactor for the WGSR. The long term behaviour (hydrogen permeability and selectivity) of Pd-Ag membrane under hydrogen exposure was studied, and the use of the Pd-Ag membrane reactor to produce hydrogen through the WGSR was also performed. A detailed literature review was conducted, based on the information gathered from literature. A Permeability and WGS reaction testing stations was designed and built. A thin (20μm) 77%wtPd-23%wtAg film was purchased from Takanaka Company in Japan. The membrane film was enclosed between two stainless steel plates to form a membrane reactor. The membrane reactor was fitted at the two different testing stations.
80

New molecular materials for organic and dye-sensitized solar cells and photocatalytic hydrogen generation

Ho, Po Yu 11 January 2016 (has links)
Emerging solar energy technology, including photovoltaics, solar fuels generation and solar thermal systems, is considered as one of the most potential renewable energy resources because of the tremendous and free radiant energy supply by our sun. Unlike burning of fossil fuels, carbon dioxide emission-free energy conversion process is definitely another key feature and attracting scientists to explore these research areas. Besides, this implies a giant business market to compete with traditional fossil fuel companies. Nevertheless, it is too early to realize commercial application since the technologies are in the early development stage and there is still much room to explore and improve. Simply speaking, energy conversion efficiency, robustness, environmental impacts and cost are the major factors the community should deeply concentrate on at this moment. This provides many research opportunities on the creation of novel molecular functional materials and investigates the relationship between the molecular design and functional properties, and they obviously take up significant roles in the technology evolution. The basic concepts and conspectuses regarding organic photovoltaics and light-driven hydrogen generation are collected in Chapter 1. In Chapter 2, a series of new thiophene-based small molecules is presented and the discussion is focused on its application in the bulk-heterojunction organic solar cells. Importantly, the structure-property relationship is elucidated by varying the terminal electron withdrawing group and elongating the central electron donating unit. The highest power conversion efficiency (η) of 2.6% is attained by the device with compound M3 as the active material with traditional device configuration (without any annealing process and additives addition) under AM 1.5G irradiation. In Chapter 3, a series of DπA organic dyes is introduced and the discussion concentrates on its application in the dye-sensitized solar cells. Briefly, a case study on alkyl chain effects is investigated while a new starburst triarylamine donor and uncommon selenophene-containing π-linker are studied separately. The highest power conversion efficiency (η) of 6.7% is achieved by D11 under AM 1.5G irradiation with a high open-circuit voltage of 0.825 V. In Chapter 4, three new platinum(II) diimine complexes are synthesized and they are utilized as photosensitizers with platinized titanium dioxide as catalyst site in the context of light-driven hydrogen generation. Comparison between platinum(II) diimine dithiolate complex and platinum(II) diimine bis(acetylide) complex is accomplished, and the importance of photosensitization using an organic chromophore with a desirable energy transfer consideration is accounted. Finally, Chapter 5 puts forward the concluding remarks and possible future works while Chapter 6 includes all the experimental details of the studied compounds presented in Chapter 24.

Page generated in 0.0984 seconds