• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ASSESSMENT OF POTENTIAL IMPACTS TO SUBSURFACE BODIES OF WATER DUE TO UNDERGROUND COAL MINING

Bode-Jimenez, Gabriel 01 January 2017 (has links)
Underground coal mining operations induce ground movements, which may impact overlying hydrogeologic systems. Potential impacts mainly include changes in the hydraulic conductivity of overlying strata, decreasing of the hydraulic head and changes in water flow. The present research quantifies potential hydrogeologic impacts caused by underground mining through modeling of pre- and post-mining hydrogeologic systems. Three-dimensional conceptual hydrogeologic models were constructed with the Processing Modflow for Windows software package (PMWiN). The models are based on an actual case study, but were simplified in terms of geometry and material properties. Water flow was simulated under changing hydrogeologic properties. A number of scenarios were investigated including models with horizontal or inclined topography, featuring an aquifer overlying two longwall panels. The hydrogeologic properties of the models were estimated based on empirical relationships between the post-mining hydraulic conductivity and strain in the overburden. The strain regime in the overburden was estimated using the Surface Deformation Prediction System (SDPS) package, which allows calculation of surface deformations due to underground coal mining. The research focuses on changes in hydraulic heads; results indicate that hydraulic heads may decrease over undermined areas and may rebound as mining ceases. Water infiltration may occur from higher located overburden formations to lower formations due to mining induced changes in hydrogeologic properties.
2

Groundwater flow and recharge within the Barton Springs segment of the Edwards Aquifer, southern Travis and northern Hays Counties, Texas

Hauwert, Nico Mark 07 November 2011 (has links)
The Barton Springs Segment, part of the karstic Edwards aquifer in Central Texas, is a Sole Source aquifer, is habitat to rare karst species, and provides water to a well-loved municipal swimming pool, yet its hydrogeologic properties remain insufficiently understood. For this study, the hydrogeologic characteristics of the Barton Springs Segment were investigated using several approaches, including mapping of hydrostratigraphic units and faults, measurement of upland infiltration, groundwater traces, and aquifer tests. The depositional environment, diagenesis, fracturing, down-dropped and dipping faulted blocks, and subsequent dissolution were determined to play important roles in controlling groundwater flow-path development within the Barton Springs Segment. In particular, downdropped fault blocks create groundwater gradients to the southeast that influence flow in the Edwards outcrop area. Upland internal drainage basins were found to be extremely efficient at conveying recharge to the underlying aquifer. The maturity of natural internal drainage sinkholes can be measured by its bowl volume, which grows in proportion to the catchment area it captures. A 19-hectare internal drainage basin, HQ Flat sinkhole, was monitored for rainfall, evapotranspiration, soil moisture, and discrete runoff to the cave drain. During a 505-day period, 5.5% of measured rainfall entered the cave drain as discrete recharge, 26% of measured rainfall infiltrated through soils on the slopes, and the remaining 68% was lost through evapotranspiration. This amount of upland infiltration is consistent with infiltration measurements in other karst areas and is much larger than the 1% upland recharge of rainfall that was previously estimated. A chloride mass balance indicates that at the adjacent Tabor research site, about 50% of rainfall infiltrates to a 6-meter depth. Dye-tracing and pump tests demonstrated that primary and secondary groundwater flow paths are the major influence on transmissivity within the Barton Springs Segment. Groundwater tracing breakthroughs reveal very high advection and relatively low dispersion. Drawdown response to pump tests indicates a very high degree of anisotropy, controlled by location of groundwater flow paths. Overall the Barton Springs Segment is a mature karst aquifer with highly developed rapid, discrete network for both recharge and groundwater-flow. / text

Page generated in 0.0669 seconds