• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 27
  • 10
  • 8
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 127
  • 29
  • 20
  • 16
  • 15
  • 15
  • 15
  • 13
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The characteristics of hydrocyclones : and their application as control units in comminution circuits

Rao, T. C. Unknown Date (has links)
No description available.
52

The characteristics of hydrocyclones : and their application as control units in comminution circuits

Rao, T. C. Unknown Date (has links)
No description available.
53

The characteristics of hydrocyclones : and their application as control units in comminution circuits

Rao, T. C. Unknown Date (has links)
No description available.
54

The characteristics of hydrocyclones : and their application as control units in comminution circuits

Rao, T. C. Unknown Date (has links)
No description available.
55

The characteristics of hydrocyclones : and their application as control units in comminution circuits

Rao, T. C. Unknown Date (has links)
No description available.
56

The characteristics of hydrocyclones : and their application as control units in comminution circuits

Rao, T. C. Unknown Date (has links)
No description available.
57

Electrochemical studies of gold bioaccumulation by yeast cell wall components

Lack, Barbara Anne January 1999 (has links)
Gold, amongst other group 11 metals, was almost certainly one of the first three metals known to man. In addition to the economic importance of the metal, gold has a wide variety of applications in the medical, electrocatalytical and micro-electronics fields. However, the determination of gold ions in solution, with accuracy, precision, sensitivity and selectivity is still an interesting and much debated topic in analytical chemistry. A system whereby gold ions have been successfully detected employing an electrochemical technique, known as stripping voltammetry, has been developed. The electrochemical method was chosen over other available techniques for the sensitivity, particularly at low concentrations, and selectivity properties; notably in the presence of other metal ions. Under acidic conditions, the electrochemical technique was applied and the presence of gold(III), at a concentration of 2.53 x 10⁻⁵ mol dm⁻³ in a mine waste water sample, was detected. Biomass, in particular yeast and algal types, have been successfully employed in extracting low concentrations of gold ions from industrial effluents. The manipulation of the biological facility for mineral interaction, biohydrometallurgy, may yield numerous potential new technologies. South Africa in particular would benefit from this area of research, since the country is a major ore and metal refining country and if the output and the efficiency of the mines could be improved, even by a small percentage, the financial rewards would be vast. In this study, the application of adsorptive cathodic stripping voltammetry (AdCSV) of gold(III) in the presence of various Saccharomyces cerevisiae cell wall components, was investigated to determine which, if any, were involved specifically in the chemical binding of the gold ions. The chitin and mannan extracts showed the most promise with detection limits of 1.10 x 10⁻⁶ mol dm⁻³ and 9 x 10⁻⁹ mol dm⁻³, respectively; employing the AdCSV technique. A modification of the stripping voltammetry technique, Osteryoung square wave stripping voltammetry (OSWSV), provided the lowest detection limit, for gold(IIl) in the presence of mannan, of 1.70 x 10⁻¹¹ mol dm⁻³ ; utilising a modified carbon paste electrode. The detection of gold(III) has been shown to be dependent on the type of electrode employed, the electrolyte solution and the presence of interfering agents. The effect of copper(II) and silver(I) on the detection of the gold(III) in solution was investigated; whilst the silver(I) has shown no detrimental effects on gold (III) detection systems, copper(II) has indicated the possibility of forming an inter-metallic compound with the gold(III). However, mannan has shown to selectively and preferentially bind the gold(III) in the presence of a ten-fold excess of copper(II). Nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, as well as computer modelling techniques were employed to further investIgate the mannan-gold(III) interaction and proposed complex formed. The NMR, IR and computer modelling data are in agreement with the electrochemical data on proposing a mannan-gold(III) complex. The co-ordination site was established to be in the vicinity of the H-I and H-2 protons and the gold(III) adopts a square-planar geometry upon co-ordination. The benefits of the research are useful from a biological perspective (i. e. as more is known about the binding sites, microbiologists/biochemists may work on the optimisation of parameters for these sites or work could be furthered into the enhanced expression of the sites) and an industrial one. In addition to the' two major benefits, an improved understanding of gold and its chemistry would be achieved, which is advantageous for other fields of research as well.
58

The enhancing effect of pyrite on the kinetics of ferrous iron oxidation by dissolved oxygen

Littlejohn, Patrick Oliver Leahy 05 1900 (has links)
The oxidation of ferrous in acidic sulfate media by dissolved oxygen is an important reaction in any sulfide mineral leach process that uses ferric as a surrogate oxidant. Ferric is reduced as it oxidizes metal sulfides, and the resulting ferrous is re-oxidized by dissolved oxygen. The oxidation of ferrous to ferric by dissolved oxygen is quite slow outside of elevated pressure-temperature autoclaves. However, pyrite in solution has been found to have a catalytic effect on the reaction, speeding it up significantly. This effect is particularly significant in the context of the Galvanox™ acidic sulphate atmospheric leach process. To quantify the kinetics of this reaction and the effect of pyrite, tests were run in an atmospheric batch reactor with constant tracking of pH and redox potential. The kinetics of this reaction were quantified with respect to primary variables such as acidity, pyrite pulp density, temperature, and total iron concentration. Secondary factors such as copper concentration, gas liquid mixing rate and the source of pyrite mineral were also considered. Redox potential is a logarithmic function of the ratio of the activity of free ferric to free ferrous and is complicated by speciation within the Fe(III)-Fe(II)-H₂SO₄-H₂O system. Correlating redox potential data with extent of reaction was achieved by using permanganate redox titration and the isokinetic technique to link redox potential data directly to the fraction of ferrous reacted. This technique is effective over the potential range of interest – 360 to 510 mV vs Ag/AgCl. Under these conditions the leaching rate of pyrite is appreciable, so the rate of pyrite dissolution was predicted with the shrinking sphere model developed by Bouffard et al. Ferrous oxidation in solution was simulated with an adjusted version of the model of Dreisinger and Peters, which also accounts for the catalytic effect of dissolved copper. Oxygen solubility was predicted using the model of Tromans. Experimental data show a clear enhancing effect of pyrite on ferrous oxidation. A mathematical model of this effect applicable to the conditions of Galvanox™ leaching is presented. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
59

Sulfur dispersing agents for nickel sulfide leaching above the melting point of sulfur

Tong, Libin 05 1900 (has links)
The effects of sulfur dispersing agents (SDAs) in the oxygen pressure leaching of nickel concentrate at medium temperature were investigated. Liquid sulfur-aqueous solution interfacial tensions and liquid sulfur-sulfide mineral contact angles were measured at 140ºC, 690 kPa overpressure by nitrogen, and 1.0 mol/L NiSO₄. The effects of SDAs including lignosulfonate, Quebracho, o-phenylenediamine (OPD), and humic acid were evaluated by the calculation of the work of adhesion in the liquid sulfur-sulfide mineral-aqueous solution systems. It was found that the sulfide mineral surface is sulfophobic at pH from 4.1 to 4.5 due to the hydrolysis of nickel (II) ions to nickel hydroxide and the deposition of nickel hydroxide on the mineral surface. These findings apply to four different sulfide mineral systems, including pentlandite, nickeliferous pyrrhotite, pyrrhotite, and chalcopyrite. Lignosulfonate, Quebracho, and humic acid were found to significantly reduce the work of adhesion indicating they should be effective SDAs. OPD is ineffective in changing the work of adhesion of sulfur on the mineral sulfides indicating that it is not a good candidate for sulfur dispersion. The adsorption behavior of SDAs, including lignosulfonate, Quebracho, OPD, and humic acid on elemental sulfur and on nickel sulfide concentrate was investigated. Lignosulfonate, Quebracho, and humic acid were characterized by their infrared spectra. The charge changes on elemental sulfur surface were characterized by the measurement of the electrokinetic sonic amplitude (ESA) in the absence or presence of SDAs. The adsorption of lignosulfonate on molten sulfur surface was calculated by the Gibbs Equation. The adsorption of lignosulfonate, Quebracho, and humic acid on the nickel concentrate was investigated at ambient temperature. The adsorption of lignosulfonate, Quebracho, and humic acid on the nickel concentrate was found to be monolayer adsorption, which was fitted to the Langmuir adsorption isotherm. Electrostatic interaction and ion-binding are the possible mechanisms for the adsorption of lignosulfonate and humic acid on the nickel concentrate. Quebracho is adsorbed on the nickel concentrate through hydroxyl and sulfonate groups. OPD cannot adsorb on the molten sulfur surface. OPD undergoes chemical change in aqueous solution in the presence of ferric at ambient temperature. Oxygen pressure leaching experiments were performed at 140 or 150ºC under 690 kPa oxygen overpressure. The particle size of the nickel concentrate was found to be an important factor in leaching. During the leaching of nickel concentrate with P₈₀ of 48 µm, the SDAs were believed to be fully degraded before nickel was fully extracted. At most 66% nickel was extracted in the presence of 20 kg/t OPD. Fine grinding (P₈₀ of 10 µm) was sufficient for 99% nickel recovery at low pulp density while at high pulp density, the nickel extraction increased from 95% to 99% with addition of SDAs. Based on the leaching results on a nickel concentrate sample (-44 µm), OPD had the effect of increasing the nickel extraction to about 99%, followed by Quebracho (83%), lignosulfonate (72%), and humic acid (61%). It is suggested that the oxidation product of OPD is effective in solving the sulfur wetting problem in leaching. 97% nickel was recovered in the presence of 5 g/L chloride ion. Chloride ion has an effect to enhance the performance of lignosulfonate under leaching conditions. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
60

Predispersed solvent extraction

Rodarte, Alma Isabel Marín 13 October 2010 (has links)
A new solvent extraction method has been developed for the extraction of metal and organic ions from very dilute aqueous solutions. The new method, which has been named Predispersed Solvent Extraction (POSE), is based on the principle that 1 there is no need to comminute both phases. All that is necessary is to comminute the solvent phase prior to contacting it with the feed. This is done by converting the solvent into aphrons, which are micron-sized globules encapsulated in a soapy film. Since the aphrons are so small, it takes a long time for the solvent to rise to the surface under the influence of gravity alone. Therefore, the separation is expedited by piggy-back flotation of the aphrons on specially prepared gas bubbles, which are somewhat larger than aphrons and are called colloidal gas aphrons (CGA). Copper, uranium and chromium ions, and alizarin yellow were extracted from very dilute aqueous solutions using PDSE. Tests were performed in a vertical glass column in both batch and continuous modes, and in a continuous horizontal trough. The new solvent extraction procedure worked very efficiently and very quickly under laboratory conditions. Higher than 99% extraction was achieved in many of the tests performed. / Master of Science

Page generated in 0.0364 seconds